22 23 24 通讯作者: 25 * Matija Milosevic,博士 26 大阪大学 27 工程科学研究生院 28 机械科学与生物工程系 29 1-3 Machikaneyama-cho, J520 30 丰中市,大阪府 560-8531,日本 31 电话:+81-6-6850-6536;传真:+81-6-6850-6534 32 电子邮件:matija@bpe.es.osaka-u.ac.jp 33 网站:www.neuromet.org 34 35 36 摘要字数:299 / 300 字 37 手稿字数(从引言到结论):9608 38 图表数量:4 个图表和 1 个表格 39 40
背景失去自主运动的能力会对人的独立性和生活质量造成毁灭性后果。中风和脊髓损伤 (SCI) 是导致瘫痪的两个重要原因,影响着全世界成千上万的人。人们做出了非凡的努力来尝试减轻瘫痪的影响。近年来,随着关于运动功能恢复机制的新神经生理学知识的不断整合,自主运动的康复得到了丰富。一个大大改善神经康复的核心概念是神经可塑性,即中枢神经系统在获得、保持和巩固运动技能的过程中重组自身的能力 [ 1 ]。在本文中,我们介绍了一种由于我们对神经系统可塑性的理解不断加深而蓬勃发展的干预措施:功能性电刺激
图1。实验框架。(a)在左侧,行为实验平台的示意图。当动物执行机器人覆盖,掌握和拉动任务时,我们测量了施加到机器人接头,全LIMB运动学,肌电图(EMG)活性的3D力,来自手臂和手的八个肌肉,以及来自感觉运动区域的皮层内信号。实验方案的右,概念方案:(1)在控制计算机上运行的解码器确定了运动的尝试,(2)(2)将电脊髓刺激传递到适当的脊髓根。(3)刺激产生了我们在离线记录和分析的手臂和手动运动。(b)任务的示意图。猴子经过训练,可以抓住,掌握并拉出放置在机器人臂末端效应子上的目标对象。我们认为当目标空间阈值在拉动过程中越过时,我们认为运动完整。版权所有JemèreRuby。
经颅直流电刺激 (tDCS) 是一种非侵入性脑刺激技术 (NIBS),已被证明可对一系列神经和精神疾病产生有益作用。不幸的是,尽管已被广泛研究,但对 tDCS 效应机制的理解仍然存在一些空白。因此,科学家仍在尝试揭示其积极作用背后的细胞和分子机制,以便更合适地应用。实验模型提供了一致的证据表明,tDCS 通过调节神经元的兴奋性和突触可塑性来改善学习和记忆。最近,在 tDCS 神经生物学效应中,已报告了生理和病理条件下的神经同步和树突结构变化,表明可能在神经回路水平上产生影响。在这篇评论中,我们重点关注 tDCS 对结构可塑性变化和神经元重组的新兴影响,旨在将这两个方面与迄今为止发现的基础分子机制相匹配,为揭示 tDCS 在治疗脑功能障碍方面的新疗法提供新的视角。
1 卡尔·冯·奥西茨基大学医学与健康科学学院神经病学系,26129 奥尔登堡,德国;julius.kricheldorff@uni-oldenburg.de (JK);karsten.witt@uni-oldenburg.de (KW) 2 波恩大学医院精神病学和心理治疗系医学心理学分部,53127 波恩,德国;katie.goke@mail.utoronto.ca (KG);m.kiebs@ukbonn.de (MK) 3 多伦多大学医学科学研究所,加拿大安大略省多伦多 M5S 3G8 4 卡尔·冯·奥西茨基大学实验心理学实验室,26129 奥尔登堡,德国;florian.kasten@uni-oldenburg.de (FHK); christoph.herrmann@uni-oldenburg.de (CSH) 5 卡尔·冯·奥西茨基大学神经感觉科学研究中心,26129 奥尔登堡,德国 6 卡尔·冯·奥西茨基大学精神病学和心理治疗系,26129 奥尔登堡,德国 * 通讯地址:rene.hurlemann@uni-oldenburg.de;电话:+49-441-9615-1501 † 这些作者对这项工作做出了同等贡献。
背景:通过经颅技术调节大脑活动的非侵入性脑刺激方法(如经颅直流电刺激 (tDCS))越来越普遍,用于研究调节的大脑区域与刺激结果之间的关系。然而,tDCS 的个体间差异使得在群体层面检测干预效果变得具有挑战性。收集多种模式的磁共振成像数据(即结构和功能 MRI)有助于研究剂量反应最终如何影响大脑对 tDCS 的反应功能。方法:我们通过一项随机、三盲、假对照试验收集了数据,该试验有两个平行组。60 名患有 MUD 的参与者被随机分配到假或主动 tDCS(每组 n=30,2 mA,20 分钟,阳极/阴极超过 F4/Fp1)。在 tDCS 之前和之后立即收集结构和功能 MRI(包括高分辨率 T1 和 T2 加权 MRI、静息态 fMRI 和甲基苯丙胺线索反应任务(冰毒与中性线索))。T1 和 T2 加权 MRI 数据用于为每个个体生成头部模型以模拟电场。从四个不同层面研究了电场(剂量)与脑功能变化(反应)之间的关联:(1)体素水平、(2)区域水平(基于图谱的分区)、(3)簇水平(感兴趣对比中的活动簇)和(4)网络水平(基于任务和静息态的网络)。结果:在(1)体素水平、(2)区域水平和(3)簇水平,我们的结果显示功能活动变化与电场之间没有显著相关性。然而,(4)在网络层面,默认网络中的电场和 ReHo 之间存在显著的负相关性(r=-0.46(中等效应大小),校正后的 p=0.018)。对于基于任务的 fMRI 数据的网络级分析,额顶叶连接与额叶刺激部位的电场呈现出显著的正相关性(r=0.41(中等效应大小),校正后的 p=0.03)。结论:所提出的流程提供了一个方法框架,可以从四个不同水平的剂量反应关系方面分析 tDCS 效应,从而将电场(剂量)变化与 tDCS 神经反应的变化直接联系起来。结果表明,基于网络的分析可能是一种更好的方法,可以为 tDCS 的神经调节作用对每个个体大脑区域电流剂量的依赖性提供新的见解。剂量反应整合可以为未来脑刺激研究中的剂量优化/定制或预测/治疗反应生物标志物提取提供参考。
造血干细胞移植是血液学恶性肿瘤的常见挽救生命治疗方法,尽管可以导致长期功能障碍,疲劳,肌肉动物症,并且生活质量降低。尽管传统的运动有助于减少这些影响,但不一致地建议和不经常维护,并且大多数患者在治疗期间和治疗后仍久坐不变。需要采用替代性康复策略,例如神经肌肉电刺激,这可能更适合造血干细胞移植受者的能力。接受自体HCT的患者正在参加一项随机对照试验,其中1:1(神经肌肉电刺激:假)设计通过诊断和性别分层。在造血干细胞移植之前评估身体功能,身体成分,生活质量和疲劳(在开始预备治疗之前)和造血干细胞移植后24±5天(随访1);还评估了造血干细胞移植后6个月的身体功能和质量(随访2)。主要结果是6分钟步行测试变更评分的组差异(随访1-Pre-Transplant;最终入学目标n = 23/组)。我们假设1)神经肌肉电刺激将减轻造血干细胞移植对物理功能,肌肉质量,生活质量和随访时的疲劳的不良影响,与随访1和2)物理功能相比,将在疲劳和交易质量下进行疲劳和疲劳。我们还将描述造血干细胞移植期间神经肌肉电刺激的可行性和可接受性。该建议将通过确定目前未充分利用的治疗策略的功效和可行性来改善患者护理和生活质量,旨在保持日常功能并降低
视觉皮层电刺激有可能恢复盲人的视力。到目前为止,视觉皮层假肢的效果有限,因为没有假肢能够恢复完整的视力,但由于无线和技术的进步,该领域在最近几年重新引起了人们的兴趣。然而,为了实现这些新设备所期望的治疗效果,仍有许多科学和技术挑战需要解决。其中一个主要挑战是对大脑本身的电刺激。在这篇综述中,我们从电气的角度分析了基于电极的视觉皮层假肢的结果。我们首先简要介绍关于电极-组织界面和电刺激安全性的已知信息。然后,我们重点介绍假肢视觉的心理物理学以及视觉皮层电刺激与光幻视感知之间相互作用的最新进展。最后,我们讨论了视觉皮层电刺激和电极阵列设计在开发新一代可植入皮层视觉假肢方面所面临的挑战和前景。
我们收集了 4 名患有药物抵抗性癫痫且植入了研究性 Medtronic Summit RC+S™ 的患者的动态 iEEG 记录,以研究新型刺激模式并追踪长期行为状态动态。患者在同时进行双侧海马 (HPC) iEEG 记录时接受了治疗性 ANT DBS。我们评估了在三天同时进行的 iEEG 和多导睡眠图 (PSG) 期间,使用专家睡眠注释,在不同 ANT 刺激频率 (2 Hz、7 Hz、高频 >100 Hz) [2,30–34] 下自动行为状态分类的可行性和准确性。使用朴素贝叶斯分类器 [35,36] 将 iEEG 信号分类为清醒、快速眼动 (REM) 和非 REM(非 REM:N2 和 N3)。随后,我们在 6 个月内将训练好的分类器部署在 4 名门诊患者身上。