日历描述本课程是对现代计算机辅助设计(CAD)技术在物理对象中生成3D数字模型中使用的介绍。主题包括触点和非接触数据采集技术,数据类型和交换格式以及高级可视化和表面技术。课程信息讲师:Pawel kurowski教授电子邮件:pkurows@uwo.ca讲座:请参阅草案我的时间表先决条件2259A/b或MSE 2202A/B认证单位工程学工程学70%物理对象的逆向工程简介•有关反向工程的历史笔记(RE)•RE Process 2。数据采集技术•RE技术分类•非接触技术:激光扫描,CT/MRI•接触技术:坐标测量机(CMM)•破坏性技术•涉及RE 3的案例研究。数据类型和数据交换格式•非参数数据格式:点云,多边形网格•参数数据格式(B-REP/NURBS)•多边形与参数数据•数据交换操作•缓解数据交换错误4。参数数据重建•非参数到参数数据转换•计算机图形和CAD的图形输出•建模策略:基于历史记录和直接的直接•歧管和非Manifold模型•表面操作和功能性和功能性•表面质量分析; A类表面•A类表面的工业应用•参数数据重建的准确性5。加法制造
基于MOSFET的集成电路和基于TFT的平板显示器是全球最大的两个微电子产业。前者的总体趋势是将器件尺寸缩小到纳米级;后者的趋势是将产品尺寸增加到几米。薄膜对于器件的性能和可靠性至关重要。除了严格控制几何形状、轮廓和产量外,成功的制造工艺还必须满足三个基本要求:大面积、高产量和低温。等离子体工艺,即等离子体增强化学气相沉积(PECVD)、等离子体蚀刻(PE)/反应离子蚀刻(RIE)和溅射沉积,已被证明能有效满足上述要求。虽然对纳米和千兆级微电子的要求截然不同,但它们可以通过基于基本等离子体物理和化学描述复杂的工艺-材料-器件关系来实现。在本次演讲中,将给出使用PECVD工艺操纵体膜和界面特性以获得优化的器件特性的示例。此外,还将讨论在等离子蚀刻工艺中实现高蚀刻选择性、倾斜边缘轮廓和最小化辐射对晶体管的损伤的原理。此外,还将回顾高结晶温度、用于栅极电介质的非晶亚纳米 EOT 高 k、纳米晶体嵌入非易失性存储器以及通过溅射沉积法制备的新型固态白炽发光器件。创新方法(例如新的基于等离子的室温铜蚀刻工艺)可以解决当前行业以及未来半导体制造中的许多挑战性问题。
摘要 增材制造电子产品 (AME),也称为印刷电子产品,对于预期的物联网 (IoT) 越来越重要。这需要制造技术,允许将各种纯功能材料和设备集成到不同的柔性和刚性表面上。然而,目前的基于墨水的技术存在复杂且昂贵的墨水配方、与墨水相关的污染(添加剂/溶剂)以及有限的印刷材料来源等问题。因此,打印无污染和多材料结构和设备具有挑战性。这里展示了一种利用纳米和微米级定向激光沉积的多材料增材纳米制造 (M-ANM) 技术,允许打印横向和垂直混合结构和设备。这种 M-ANM 技术涉及对放置在打印机头内的目标转盘上的固体目标进行脉冲激光烧蚀,以原位生成无污染的纳米颗粒,然后通过载气将其引导至喷嘴并到达基板表面,在那里它们被第二束激光实时烧结和打印。目标转盘按照预定的顺序将特定目标与烧蚀激光束接触,从而在单个过程中打印多种材料,包括金属、半导体和绝缘体。利用这种 M-ANM 技术,可以打印和表征各种多材料设备,例如银/氧化锌 (Ag/ZnO) 光电探测器和混合银/氧化铝 (Ag/Al 2 O 3 ) 电路。我们的 M-ANM 技术的质量和多功能性为新兴物联网提供了潜在的制造选择。关键词:印刷电子、多材料打印、增材纳米制造、干打印、柔性混合电子。介绍随着物联网 (IoT) 的出现,大多数物体和系统都有望变得智能,人们对开发新材料和先进制造技术产生了浓厚的兴趣,以便将各种功能(包括传感器、电池、显示器和电子设备)直接集成到不同的表面上 [1-6]。传统的电子制造方法,如光刻、聚焦离子束 (FIB) 和电子束光刻 (EBL),需要复杂且昂贵的洁净室设施或高真空设备,并且还涉及多个减材步骤。因此,人们对可以在大气条件下工作并在各种表面上打印的经济高效的增材制造/打印技术产生了广泛的兴趣。
已进行了可调电流限制范围的电路模拟,组件折衷,组件辐射测试和硬件面包板的几个迭代,以确定供应渠道配置,具有满足要求的潜力。这导致了Fehler章中概述的SPS架构!Verweisquelle Konnte Nicht Gefunden Werden。使用选定的组件,将体系结构转移到PCB设计中,即示意图和布局,如第3章进行了PCB制造和组装的三个迭代进行调试和测试。最终面包板用作SPS示范器进行性能和环境测试。实验室和环境测试。测试设置,结果和数据评估在第5章中显示。总而言之,已经实现了脱危活动的目标,并且已经证明了SPS概念的可行性。SPS模块将非常适合用于提供商业和潜在辐射敏感零件的应用。SPS设计已被制定以应对辐射效应。已经建立了有关SPS飞行模型的进一步发展步骤的明确计划。
水凝胶因其独特的特性(例如高含水量、柔软性和生物相容性)而成为柔性电子产品的有前途的材料。从这个角度来看,我们概述了柔性电子产品中水凝胶的发展,重点关注三个关键方面:机械性能、界面粘附和导电性。我们讨论了设计高性能水凝胶的原理,并介绍了它们在医疗保健柔性电子产品领域的潜在应用的代表性示例。尽管取得了重大进展,但仍存在一些挑战,包括提高抗疲劳能力、增强界面粘附和平衡潮湿环境中的含水量。此外,我们强调了在未来研究中考虑水凝胶-细胞相互作用和水凝胶动态特性的重要性。展望未来,柔性电子产品中水凝胶的未来前景光明,令人兴奋的机遇即将出现,但需要继续投资研发以克服剩余的挑战。
有机电子应用的发展已到达一个关键点。虽然物联网、透明太阳能和柔性显示器等市场发展势头强劲,但 OLED 显示器仍处于领先地位,目前的市场规模超过 250 亿美元,有助于为其他应用创建基础设施和生态系统。对于所有这些新兴应用,必须将可持续性融入材料选择、加工和设备架构中,并形成循环方法的闭环。从这个角度来看,我们评估了有机电子产品中嵌入碳的状态、更可持续的材料和制造选项,包括可在产品架构和报废时应用的工程回收解决方案。这个新兴行业有责任确保“从摇篮到摇篮”的方法。我们强调,拆卸和回收的难易程度需要与产品寿命密切相关,并且应在产品设计中促进再生。材料选择应考虑合成、加工和最终产品回收的环境影响以及性能。
目标应用包括电容式电源、三相 UPS、智能计量和太阳能应用的微型逆变器。它们也适用于车载充电器等汽车应用。这些电容器采用符合 IEC 60286-2 标准的卷带包装。R53B 系列采用 X2 技术,该技术结合了 THB IIIB 级、微型尺寸、高电容值和低卤素含量。它们还符合气候等级 40/110/56、IEC 60068-1 的要求,通过 AEC-Q200 认证并符合 RoHS 标准。电容范围从 0.068 到 20μF,推荐直流电压为 ≤1000VDC,额定交流电压为 350VAC 50/60Hz 或额定直流电压为 800VDC。使用寿命在 -40 至 125°C 下为 1,000 小时。
所列替代品仅评估了其在基本层面上替代 PFAS 化合物的技术可行性;通常,它们是其他化合物或产品,已被证明具有相同的功能,但根据相关产品的特定需求,可能不可行。此外,任何被列为替代品的特定产品均未经过独立验证是否不含 PFAS;它们是根据制造商的声明和/或安全数据表和技术文件中提供的信息列出的。尚未对替代品进行危害评估。出于上述所有原因,这些潜在替代品在开始替代之前需要进一步调查。