[1] MILLER DL, SMITH NB, BAILEY MR 等。治疗性超声应用和安全注意事项概述[J]。超声医学杂志,2012,31 (4): 623-634。[2] WANG J, ZHENG Z, CHAN J 等。用于血管内超声成像的电容式微机械超声换能器[J]。微系统纳米工程,2020,6 (1): 73。[3] JIANG X, TANG HY, LU Y 等。基于与 CMOS 电路键合的 PMUT 阵列的发射波束成形超声指纹传感器[J]。IEEE 超声铁电频率控制学报,2017,PP (9): 1-1。[4] CHEN X, XU J, CHEN H 等。利用多频连续波的 pMUT 阵列实现高精度超声测距仪[J]。微机电系统,2019 年。[5] CABRERA-MUNOZ NE、ELIAHOO P、WODNICKI R 等人。微型 15 MHz 侧视相控阵换能器导管的制造和特性[J]。IEEE 超声铁电和频率控制学报,2019 年:1-1。[6] LU Y、HEIDARI A、SHELTON S 等人。用于血管内超声成像的高频压电微机械超声换能器阵列[S]。IEEE 微机电系统国际会议;2014 年。[7] ZAMORA I、LEDESMA E、URANGA A 等人。用于成像应用的具有 +17 dB SNR 的单片 PMUT-on-CMOS 超声系统[J]。 IEEE Access,2020,页(99):1-1。[8] JUNG J,LEE W,KANG W 等。压电微机械超声换能器及其应用综述[J]。微机械与微工程杂志,2017,27 (11):113001。[9] BERG S,RONNEKLEIV A。5F-5通过引入有损顶层降低CMUT阵列中膜之间的流体耦合串扰[S]。超声波研讨会;2012年。[10] LARSON J D。相控阵换能器中的非理想辐射器[S]。IEEE;1981年。[11] NISTORICA C、LATEV D、SANO T 等。宽带宽、高灵敏度的高频压电微机械换能器[S]。 2019 IEEE 国际超声波研讨会(IUS);2019: 1088-1091。[12] 何丽梅,徐文江,刘文江等。基于三维有限元仿真的二维阵列压电微机械超声换能器性能和串扰评估[S]。2019 IEEE 国际超声波研讨会(IUS);2019。[13] PIROUZ A、MAGRUDER R、HARVEY G 等。基于 FEA 和云 HPC 的大型 PMUT 阵列串扰研究[S]。2019 IEEE 国际超声波研讨会(IUS);2019。[14] DZIEWIERZ J、RAMADAS SN、GACHAGAN A 等。一种用于NDE应用的包含六边形元件和三角形切割压电复合材料子结构的2D超声波阵列设计[S]。超声波研讨会;2009年。[15]徐婷,赵玲,姜哲,等。低串扰、高阻抗的压电微机械超声换能器阵列设计
UDC 621.317.727.1 https://doi.org/10.20998/2074-272X.2025.1.09 YO Haran,YO Trotsenko,OR Protsenko,MM Dixit 寄生电容对高压分压器刻度转换精度的影响目的。这项工作的目的是确定寄生电容对高压分压器刻度转换精度的影响。分析减少这种影响的可能性是高压测量的一个紧迫问题,特别是在输入电压的高频范围内。方法。在 100 Hz 至 1 MHz 范围内的正弦交流电条件下,在 QUCS 电路模拟器软件中对分压器等效电路进行了数学建模,考虑了寄生电容和电感。利用FEMM软件,采用有限元法模拟分压器高压臂采用电容分级绝缘模块中电容电流的密度分布。结果。计算结果表明,寄生电容电流百分比随屏蔽盘外半径与它们之间距离的比值而呈指数下降。但即使屏蔽盘外半径为3m左右,电容电流仍然占分压器测量电路中流动总电流的1%左右。建议不增加外半径,而是在屏蔽盘之间采用高压电容分级绝缘。结果发现,当寄生电容值变化时,大范围电压变换的误差稳定,并建议用同类型的高压模块来制造分压器的高压臂。独创性。获得了分压器尺度变换精度对其高压臂结构元件几何参数比值的依赖关系的建模结果。提出的解决方案是改变分压器高压臂的设计,这显著降低了其尺度变换误差对接地表面上结构元件寄生电容的显著变化的依赖性。实用价值。分压器高压臂特性的数学建模结果使得可以设计相同类型的高压模块用于批量生产,以便现场组装任何标称电压的宽带分压器,从而有可能集成到智能电网系统中。参考文献23,表1,图8。关键词:高压分压器、寄生电容、尺度变换精度。 В роботі розглянуто вплив будови високовольтного плеча подільника напруги на його характеристики.为了确保减少结构元件的寄生电容对有源部分的集总元件和外部物体的影响,已经研究了屏蔽集总元件的方法。通过数学建模确定了高压臂结构元件几何参数配比对高频区电压缩放误差的影响。根据建模结果,选择了利用多层电容式绝缘对分压器有源部分的集总元件进行屏蔽的方法,保证了宽频率范围内缩放电压转换误差的稳定性。高压臂结构的拟议变化使我们能够切换到分压器的模块化结构并进行其批量生产。圣经。 23、表。 1,图。 8. 关键词:高压分压器,寄生电容,刻度转换精度。问题定义。高压分压器是微电子和高压测试和研究实验室中常见的大型电压转换器。然而,这些电气设备在电力工业中,特别是在高压电气设备中没有得到广泛的应用,因为它们的结构不允许摆脱许多缺点,这些缺点使它们作为宽带大型高压转换器集成到模拟或数字变电站中变得复杂[1]。例如,在实验室条件下,对于高压分压器,在很宽的频率范围内获得了0.1量级的大范围电压转换误差,但是这种分压器结构复杂,不适用于风荷载、降水和温度变化。在开放式开关设备中,分压器附近存在不同电位(或接地)的物体会严重影响其高压臂的寄生电容。此类物体上的寄生电容会显著影响高频下大规模电压转换的精度。此外,高压臂的集总元件的复电阻的温度依赖性会影响分压器的比例因子。此外,根据客户的特定任务生产高压分压器使建立此类设备的统一批量生产系统变得复杂。这限制了显著提高电能质量指标的测定、高压设施过程的安全性和自动化程度的可能性。由于这些和其他原因,高压分压器尚未被用作大规模高压根据建模结果,选择了利用多层电容式绝缘对分压器有源部分的集总元件进行屏蔽的方法,保证了宽频率范围内缩放电压转换误差的稳定性。高压臂结构的拟议变化使我们能够切换到分压器的模块化结构并进行其批量生产。圣经。 23、表。 1,图。 8. 关键词:高压分压器,寄生电容,刻度转换精度。问题定义。高压分压器是微电子和高压测试和研究实验室中常见的大型电压转换器。然而,这些电气设备在电力工业中,特别是在高压电气设备中没有得到广泛的应用,因为它们的结构不允许摆脱许多缺点,这些缺点使它们作为宽带大型高压转换器集成到模拟或数字变电站中变得复杂[1]。例如,在实验室条件下,对于高压分压器,在很宽的频率范围内获得了0.1量级的大范围电压转换误差,但是这种分压器结构复杂,不适用于风荷载、降水和温度变化。在开放式开关设备中,分压器附近存在不同电位(或接地)的物体会严重影响其高压臂的寄生电容。此类物体上的寄生电容会显著影响高频下大规模电压转换的精度。此外,高压臂的集总元件的复电阻的温度依赖性会影响分压器的比例因子。此外,根据客户的特定任务生产高压分压器使建立此类设备的统一批量生产系统变得复杂。这限制了显著提高电能质量指标的测定、高压设施过程的安全性和自动化程度的可能性。由于这些和其他原因,高压分压器尚未被用作大规模高压根据建模结果,选择了利用多层电容式绝缘对分压器有源部分的集总元件进行屏蔽的方法,保证了宽频率范围内缩放电压转换误差的稳定性。高压臂结构的拟议变化使我们能够切换到分压器的模块化结构并进行其批量生产。圣经。 23、表。 1,图。 8. 关键词:高压分压器,寄生电容,刻度转换精度。问题定义。高压分压器是微电子和高压测试和研究实验室中常见的大型电压转换器。然而,这些电气设备在电力工业中,特别是在高压电气设备中没有得到广泛的应用,因为它们的结构不允许摆脱许多缺点,这些缺点使它们作为宽带大型高压转换器集成到模拟或数字变电站中变得复杂[1]。例如,在实验室条件下,对于高压分压器,在很宽的频率范围内获得了0.1量级的大范围电压转换误差,但是这种分压器结构复杂,不适用于风荷载、降水和温度变化。在开放式开关设备中,分压器附近存在不同电位(或接地)的物体会严重影响其高压臂的寄生电容。此类物体上的寄生电容会显著影响高频下大规模电压转换的精度。此外,高压臂的集总元件的复电阻的温度依赖性会影响分压器的比例因子。此外,根据客户的特定任务生产高压分压器使建立此类设备的统一批量生产系统变得复杂。这限制了显著提高电能质量指标的测定、高压设施过程的安全性和自动化程度的可能性。由于这些和其他原因,高压分压器尚未被用作大规模高压这些电气设备并未广泛应用于电力工业,特别是高压电气设备,因为它们的结构存在许多缺点,使得它们难以作为宽带大规模高压转换器集成到模拟或数字变电站中 [1]。例如,在实验室条件下,高压分压器在很宽频率范围内的大规模电压转换误差约为 0.1,但这种分压器的结构复杂,不适用于风荷载、降水和温度变化。在开放式开关设备中,分压器附近存在不同电位(或接地)的物体,会显著影响其高压臂的寄生电容。这些物体上的寄生电容会显著影响高频大规模电压转换的精度。此外,高压臂集总元件复电阻的温度依赖性会影响分压器的比例因子。此外,为客户的特定任务生产高压分配器使建立这种设备的统一批量生产系统变得复杂。这限制了显著改善电能质量指标的确定、高压设施的安全性和自动化的可能性。由于这些原因和其他原因,高压分配器尚未被用作大规模高压设备。这些电气设备并未广泛应用于电力工业,特别是高压电气设备,因为它们的结构存在许多缺点,使得它们难以作为宽带大规模高压转换器集成到模拟或数字变电站中 [1]。例如,在实验室条件下,高压分压器在很宽频率范围内的大规模电压转换误差约为 0.1,但这种分压器的结构复杂,不适用于风荷载、降水和温度变化。在开放式开关设备中,分压器附近存在不同电位(或接地)的物体,会显著影响其高压臂的寄生电容。这些物体上的寄生电容会显著影响高频大规模电压转换的精度。此外,高压臂集总元件复电阻的温度依赖性会影响分压器的比例因子。此外,为客户的特定任务生产高压分配器使建立这种设备的统一批量生产系统变得复杂。这限制了显著改善电能质量指标的确定、高压设施的安全性和自动化的可能性。由于这些原因和其他原因,高压分配器尚未被用作大规模高压设备。高压分压器尚未被用作大规模高压高压分压器尚未被用作大规模高压
会议 1:SID 年度业务会议 2024 年 5 月 14 日星期二 / 上午 8:00 – 8:20 / 220A 房间 会议 2:开幕致辞/主旨演讲 2024 年 5 月 14 日星期二 / 上午 8:20 – 10:20 / 220A 房间 主席:Hyun-Jae Kim,延世大学 2.1:主旨演讲 1:量子点中的量子魔力:合成开启纳米探索之旅 Moungi Bawendi,麻省理工学院教授 2.2:主旨演讲 2:新现实:AR 和 MR 中显示的机遇和挑战 Jason Hartlove,Meta 显示和光学副总裁 2.3:主旨演讲 3:超越像素,创新显示引领未来 TCL 首席执行官赵军 会议 3:AR 光合路器 (AR/VR/MR) 2024 年 5 月 14 日星期二 / 上午 8:20 – 10:20 2024 年 11 月 14 日 / 上午 11:10 - 下午 12:50 / 房间 220B 主席:Robert Visser 博士,应用材料公司 联合主席:Michael Wittek,默克公司 3.1:特邀论文:衍射波导组合器中的现实与模拟 Guillaume Genoud,Dispelix Oy,芬兰埃斯波 3.2:特邀论文:AR 光学的当前技术和发展 Jee Myung Kim,LetinAR,韩国安养 3.3:变形-XR:用于高效、宽视场近眼显示的成像波导技术 Graham Woodgate,Rain Technology Research Ltd.,英国牛津 3.4:具有曲面波导的时尚外形近眼显示器 Jaeyeol Ryu,三星研究中心,韩国首尔 3.5:杰出论文:用于 AR 显示的全彩色、宽视场单层波导 Qian杨,中佛罗里达大学,美国佛罗里达州奥兰多 第四场:量子点诺贝尔奖(发射、微型 LED 和量子点显示器) 2024 年 5 月 14 日星期二/上午 11:10 - 下午 12:10/220C 室 主席:意法半导体 Jonathan Steckel 博士 联合主席:NS Nanotech 的 Seth Coe-Sullivan 4.1:特邀论文:利用胶体纳米晶体合成和自组装来创建模块化光学和光电材料和设备 Chris Murray,宾夕法尼亚大学,美国宾夕法尼亚州费城 4.2:特邀论文:量子点:更亮?苏黎世联邦理工学院,瑞士苏黎世 4.3:特邀论文:QD-LED 发展概况:现状及未来前景 Yeo-Geon Yoon,三星显示有限公司,韩国龙仁 第 5 场:集成 EMR 手写笔显示器(交互式显示器和系统/传感器集成和多功能显示器) 2024 年 5 月 14 日星期二/上午 11:10 - 下午 12:10/房间 LL21CD 主席:Hiroshi Haga,天马日本有限公司 联合主席:Derek Solven,Synaptics 5.1:阵列基板中集成天线线圈的 Incell 电磁共振触摸 LCD Chuan Shuai,TCL 华星光电科技股份有限公司,中国武汉 5.2:柔性 OLED 显示屏的电容式触摸和电磁传感器集成设计 Lihua Wang,合肥维信诺科技有限公司,中国合肥
伊斯兰阿扎德大学阿利亚·卡图尔分公司电气工程系0000-0001-7004-3311; 2。0000-0001-6841-534X; 3。0000-0003-3720-8318 doi:10.15199/48.2024.05.47缓解亚同步共振和改进的低电压 - 电压直通乘车乘坐串联双率连接感应感应机器的能力,使用桥梁固体固体固体型固体固体型FCL摘要。串联电容器补偿方法被广泛用于传输线,以扩大传输线的主动功率能力。他们为连接大规模风电场(WFS)的连接提供了一种实用的解决方案,以将风能传输到长距离负载中心的网格中。集成大规模WFS与电力系统可能导致亚同步共振(SSR)现象和通过(LVRT)通过串联电容补偿传输线连接的WFS中的(LVRT)挑战(LVRT)挑战。本文建议使用桥梁型固态故障电流限制器(BSFCL)来阻尼SSR并增强集成到电力系统的串联电容补偿WFS的LVRT性能。本研究中建模的WF是一台聚集的双喂养机器(DFIM)。修改了第一个标准基准IEEE系统,并在PSCAD/EMTDC软件中进行了模拟,以显示BSFCL功能,用于抑制SSR并改善本文中WFS的LVRT要求。考虑到模拟结果,发现BSFCL有效地减轻了SSR振荡,并满足了集成到功率系统的串联电容式补偿WF的LVRT要求。Streszczenie。串联传感器补偿方法被广泛用于传输线,以增加传输线的主动能力。提供了一个实用的解决方案,可让您将大型风电场(FW)连接到网络,以长距离施加负载中心将风能发送到网络。大规模FW与功率系统的集成可以导致同步共振现象(SSR)以及与串行,电容补偿传输线连接的FW中与低压传递(LVRT)相关的挑战。本文建议使用半导体桥 - 型短电路电源限制器(BSFCL)来抑制SSR,并提高LVRT PE LVRT效率,并与电容性补偿与电容系统集成在一起。WF是具有双电源(DFIM)的聚合感应机。在本文中,第一个标准设计系统IEEE已在PSCAD/EMTDC软件中进行了修改和模拟,以显示BSFCL抑制SSR并提高PF的LVRT要求的能力。考虑到模拟的结果,发现BSFCL有效地舒缓了SSR振荡,并满足了与电源系统集成的电容补偿的串行FW的LVRT要求。通常,WF远离负载中心,需要长的传输线以将风力传输到它们。按串联电容器进行补偿传输线是一种实用方法,是增加长距离传输线功率传输能力[1]。两个SSR事件的细节均在参考文献[2-3]中列出。美国。美国。(减轻同步共振,并提高基于连续补偿的感应机,通过使用桥梁类型FCL的半导体FCL的感应机,在风电场中行驶的能力:风场,风场,风场,LVRT,LVRT,SSR,SSR,DFIM,BSFCL关键字: Wind,LVRT,SSR,DFIM,BSFC简介升级了风能的贡献和传播是与电网相关的WF的两个主要挑战。howver,串联电容器的应用可能导致WFS中的亚同步共振(SSR)发生[2]。此外,使用串联电容器减少了透射阻抗,并导致在短路断层期间增加WF故障电流[1-2]。SSR会导致在一个或多个子同步频率下增加与电力系统和发电机轴的能量交换,这可能会加载到风力涡轮机的故障,然后从功率系统中断开WF集成网格代码。基于LVRT要求,WF必须在不同的断层中保留服务,以确保WFS中的SSSR EVENS。在2009年,由于德克萨斯州南部的SSR事件,大量WFS的风力涡轮机被销毁。美国[4]。 在2012年,这种现象在中国圭恩地区的WF中重复。 2017年8月至10月,得克萨斯州发生了三个SSR Circumpstances。 所有这些都出现在与电力系统连接的基于DFIMS的串联综合WF中。 有两种方法可以减轻DFIM- 中的SSR美国[4]。在2012年,这种现象在中国圭恩地区的WF中重复。2017年8月至10月,得克萨斯州发生了三个SSR Circumpstances。所有这些都出现在与电力系统连接的基于DFIMS的串联综合WF中。有两种方法可以减轻DFIM-