电弧增材制造零件性能的提升依赖于结构创新和定制打印,自然优化的结构可以为设计制造提供灵感。本文以Crysomalon squamiferum壳的生物结构为灵感,采用多丝电弧增材制造(MWAAM)技术设计并制备了层状TC4/Nb多材料合金零件。利用EDS、SEM、EBSD和力学性能试验机研究了MWAAM加工仿生异质TC4/Nb多材料合金零件的界面反应、相组成、微观组织演变、晶体生长、力学性能和裂纹扩展。结果表明,MWAAM TC4/Nb多材料合金试样不同层间形成了良好的冶金结合;Ti/Nb多材料合金零件主要由α-Ti、β-Ti和(Nb,Ti)固溶体相组成。随着Nb含量的增加,从TC4层到G1层,相形貌经历了一个连续的转变过程:片层状α+β→细片层状α+短棒状α+β→针状α+β→细针状α+β。此外,随着Nb含量的增加,TC4/Nb多材料合金组分从TC4层到G2层的晶粒尺寸由3.534μm逐渐减小到2.904μm。TC4/Nb多材料合金从TC4层到G2层的显微硬度范围为404.04~245.23HV。TC4/Nb多材料合金试样具有较高的压缩强度和极限拉伸强度分别为2162.64±26MPa和663.39MPa,对应的应变量分别为31.99%和17.77%。优异的力学行为主要归因于层间晶粒尺寸的梯度转变和组织演变的良好结合;拉伸试验过程中裂纹扩展主要以裂纹偏转和多级开裂为主;TC4/Nb多材料合金构件中TC4层的强度高于G1层和G2层。
摘要:增材技术目前已广泛应用于复杂精密零件的生产,在成型模具的生产方面具有很高的潜力。本文利用电弧直接能量沉积 (WA-DED) 和激光粉末床熔合 (L-PBF) 技术开发和生产了针对增材制造优化的热成型模具。开发了具有 2D 晶格结构的轻质热成型模具的概念,在使用 L-PBF 生产时,每个模具的重量减少了 56%,从 14.2 千克减轻到 6.1 千克。在增材制造过程中,马氏体时效/沉淀硬化钢 17-4PH 被用作传统热作钢的替代品,后者的机械性能略低,但可加工性高得多。通过在工业螺旋压力机上进行锻造试验,确认了所制造模具的可加工性。
在这项研究中,分析了热处理对由线弧添加剂进行的2209双不锈钢晶体的微观结构和机械性能的影响。发现,在1100°C下进行溶液处理2小时,在300°C下进行2小时的回火可以有效地改善2209双式不锈钢的晶粒不均匀性,消除γ2和有害的脆性相,并考虑机械性能和耐腐蚀性。与原始沉积状态相比,硬度和屈服强度增加了10%和31.8%,达到245.6 hv和499.7 MPa,满足工程螺旋桨的要求。电子背裂片衍射研究表明,晶粒变得精致,奥斯丁岩在溶液热处理后保持<101> // z方向。在原始样品和实心溶液中都存在许多小角度的晶界,但是进一步的回火将小角度的晶界转化为大角度的晶界。关键字:弧添加剂制造; 2209双面不锈钢;热处理;微观结构属性
概述 获取新的或更新的电弧闪光研究只是采取全系统方法的第一步,以确保您的维护人员保持安全,同时最大限度地减少发生电弧事件时的潜在设备损坏和停机时间。ABB 提供多种解决方案,旨在满足您设施的特定需求并符合您的预算。ABB 研究和结果报告为客户提供了升级和维护电力输送基础设施所需的补救建议,结果侧重于降低运营成本、提高效率、提高可靠性和提高系统可维护性。
尽管真空电弧和梯度极限理论已用于线性对撞机和托卡马克等大型项目的设计和成本核算,但人们对其了解甚少。在真空电弧被隔离近 120 年后,电弧的确切机制及其产生的损害仍然存在争议。我们描述了真空电弧的简单通用模型,该模型可以包含所有活动机制,旨在解释所有相关数据。我们的四阶段模型基于在 805 MHz 下进行的实验,实验采用了各种腔体几何形状、磁场和实验技术,以及原子探针断层扫描和微电子故障分析的数据。该模型考虑了电弧的触发、等离子体形成、等离子体演化和表面损伤阶段。我们的数据清楚地显示了由差异冷却产生的表面损伤,这种损伤能够产生局部高场增强 β ∼ 200,并在后续脉冲中产生电弧。我们更新了模型并讨论了新特征,同时还指出了新数据在将模型扩展到更宽的频率范围方面会很有用的地方。
表格列表 表 1 – 系统故障模式监控和操作示例 ...................................................................................................... 8 表 2 – 根据确定的电弧闪光入射能量对电池外壳的要求 .............................................................................. 12 表 3 – 根据确定的电弧闪光入射能量对组件安装位置的要求 ...................................................................................................... 13 表 4 – 电池和单体电池标准 ...................................................................................................................... 13 表 5 – 需要防止机械冲击的位置 ............................................................................................................. 16 表 6 – 系统用户说明的要求 ...................................................................................................................... 20 表 B.1 – PAS 63100 验证清单 ................................................................................................................ 23 表 C.1 – PAS 63100 建议的符合性声明 ................................................................................................ 28
这项技术可以小批量生产个性化部件 [2]。这些部件可以打印成各种复杂的形状,而后期加工很少 [3]。单个产品的成本大大降低,工艺生产率也提高了 [2,4]。在电弧增材制造 (WAAM) 中,电弧焊工艺用于制造部件 [5]。电弧加热金属丝,熔融金属沉积在基材上 [5,6]。热填充金属在基材上的沉积会导致基材温度升高。与剩余较冷区域相比,基材在热影响区域的热膨胀会导致其机械性能发生变化。这会导致基材内形成残余应力 [7],并导致基材变形和尺寸不稳定 [6]。过去,不同的作者描述了
• Two main types of DRI processes: Gas-based DRI and Coal-based DRI • Iron ore pellets, typically containing a mixture of iron oxide and other elements are prepared • Iron ore pellets undergo chemical reactions with reducing agent (natural gas or carbon from coal), resulting in the removal of oxygen to produce direct reduced iron in the lower part of the shaft • The DRI along with scrap steel, is then charged into the Electric Arc炉子•电力用于产生电弧,该电弧融化炉子中的DRI和废料钢•添加合金或其他添加剂以实现所需的钢组成•由于将化石能源用作还原剂和非可再生电力•目前通过Dri
低压配电 ⎻ 低压开关设备 ⎻ 低压配电板 ⎻ 电子继电器与控制器 ⎻ 母线槽 ⎻ 电弧保护 ⎻ 低压电机控制中心 ⎻ 低压电源与照明面板 ⎻ 仪表、监控与信号