在这项研究中,我们报告了一种可柔性的4通道微电极探针,该探针涂有高度多孔和可靠的纳米复合材料的聚(3,4-乙基二氧噻吩)(PEDOT)(PEDOT)和碳纳米纤维(CNF),作为固体掺杂模板,用于固体掺杂模板,以实现高强度录制效果。通过原位电化学聚合技术开发了一种简单而良好的控制策略,该技术在灵活的4通道金微电极探针上创建PEDOT和CNF的多孔网络。不同的形态和电化学特征表明,它们具有显着且优异的电化学特性,产生了相结合高表面积,低阻抗(16.8±2mΩ.mmghz时2 kHz)和升高的电荷入口功能(超过那些pure and Pure dup pul of Pude)的微电化学特性。此外,PEDOT-CNF复合电极表现出延长的双相电荷周期耐力,导致长期电刺激的物理分层或降解可忽略不计。在小鼠脑切片上进行体外测试表明,它们可以记录自发的振荡场电位以及单单元的动作电位,并允许安全地提供电刺激以唤起磁场电位。 PEDOT-CNF复合电极的组合上级电性能,耐用性和3D微结构拓扑表现出开发未来神经表面接口应用的杰出潜力。在小鼠脑切片上进行体外测试表明,它们可以记录自发的振荡场电位以及单单元的动作电位,并允许安全地提供电刺激以唤起磁场电位。PEDOT-CNF复合电极的组合上级电性能,耐用性和3D微结构拓扑表现出开发未来神经表面接口应用的杰出潜力。
这项研究研究了使用连续的离子层吸附和反应方法(Silar)方法合成的锰(MNSE)薄膜的光学,结构和电性能(MNSE)薄膜,具有不同体积的三乙胺(TEA)作为络合物的浓度。MNSE薄膜在紫外线(UV)区域表现出很高的吸光度,根据茶浓度的不同,在0.61至0.91处达到峰值,并朝着近红外(NIR)区域下降。透射率从12.53%到92.17%不等,随着较高的茶浓度降低。膜的能带间隙从2.90 eV降低,用2 ml茶降低至2.30 eV,以10 mL的速度降低,突出了MNSE用于光伏应用的可调性。膜厚度从190.82 nm到381.63 nm不等,反映了与茶浓度的直接关系。从结构上讲,在立方相结晶的MNSE膜具有改善的结晶度和较高茶容量下的缺陷,这是晶体尺寸从20.10 nm增加到25.09 nm,并降低了位错密度和微疗法。形态分析揭示了中等茶浓度下的均匀谷物样结构,这对于光伏性能是最佳的。电性能强调了电阻率和电导率之间的权衡。膜在2 mL时表现出较高的2.72×10 s/cm的电导率,而10 mL时为1.02×10ିହs/cm。这些发现证实了MNSE薄膜对于太阳能电池中吸收层的适用性,尤其是在需要可调的光学和电气性能的情况下。通过改变茶浓度来控制这些特性的能力增强了材料在光伏以外的应用程序(包括光电和光电探测器设备)以外的应用。
I。i ntroduction浓缩光伏(CPV)技术依赖于阳光的浓度在小(通常是mm 2至cm 2)和高效(III-V基于III-V的,通常为三连接)的细胞上。但是,这种技术成本仍然太高,无法被广泛采用。一种新兴方法包括微型化模块维度(Micro-CPV)。亚毫米多插根单元是这种创新技术的核心,因为它们可以克服使标准CPV不受欢迎的某些局限性。低温操作是高电性能和提高可靠性的关键。由于其较小的尺寸,可以用微型细胞提供更轻松的热管理策略[1]。此外,较小的细胞显示出较小的电阻损失,因此在非常高的浓度下,在理论上可以实现较高的效率。
描述EPOTEC YDC 6015-TH7652P1-TP08是适用于电气铸造应用的三个组件环氧树脂系统。它由液体改性的树脂EPOTEC YDC6015,预先加速的液态酸酐硬化剂EPOTEC TH 7652 P1和液体挠性剂,Epotec TP01可以选择地添加,具体取决于组件的类型和尺寸。当适当数量的树脂,硬化剂,弯曲器和填充剂与树脂混合并铸造时,可以实现具有高均匀性的非常好的机械和电性能。该系统还能够表现出对改变高温和低温,机械和电应力的良好耐药性,并且具有出色的尺寸稳定性。建议用于APG和常规真空铸造。应用程序
摘要。必须研究用于陆地环境中高可靠性应用的电子设备,必须研究中子引起的单个事件效应。在本文中,在ISIS-Chipir辐射后,对包装商业SIC Power MOSFET的大气样中性诱导的单事件倦怠(SEB)进行了实验性观察。建立了SEB在MOSFET的电性能中的影响,并通过扫描电子显微镜观察到SIC损坏的区域。基于在模具级别的失败分析,可以定义SEB机制期间的不同阶段。敏感体积,其中二级粒子沉积了足够的能量以触发SEB机制,并位于SIC N-Drift外延层附近附近的SIC N-Drift外延层中。
背景:心脏病已被确定为心脏病发作的主要原因之一;此外,众所周知,这会导致数十亿个心肌细胞死亡,这无法再现和替换。其余细胞通常面临着血液动力学负担的显着增加。攻击或其他心血管疾病后修复心脏已避免了医学科学。使用心脏病发作的患者的细胞修复心脏肌肉的能力是再生健康的新组织的长期目标。用于心脏病治疗的细胞来源包括人类胚胎干细胞(HESC),已知这些干细胞具有分化为软骨细胞,成骨细胞,脂肪细胞和心肌细胞的能力。心脏成纤维细胞大量存在于心脏中;已知它们参与了心肌的结构,生化,机械和电性能。
超级电容器被广泛视为最有前途的新兴储能装置之一,它将化学能转化为电能并储存起来。二维 (2D) 金属氧化物/氢氧化物 (TMOs/TMHs) 因其高理论比电容、丰富的电化学活性位点以及通过与石墨碳、导电聚合物等结合组装成分级结构而彻底改变了高性能超级电容器的设计。所实现的分级结构不仅可以克服使用单一材料的局限性,而且可以带来性能上的新突破。本文综述了 2D TMOs/TMHs 及其在分级结构中作为超级电容器材料的研究进展,包括超级电容器材料的演变、分级结构的配置、所调控的电性能以及存在的优缺点。最后,提出了与超级电容器材料发展相关的方向和挑战。