先进纳米材料因其出色的光电特性,受到学术界和工业界越来越多的关注(Liu et al.,2020)。近年来,人们致力于开发高性能纳米材料,这使得其在广泛的光电应用中具有巨大潜力(Kong et al.,2021;Niu et al.,2021),特别是在发光二极管 (LED) 和太阳能电池 (SC) 方面。我们非常高兴地推出这期题为“用于发光二极管和太阳能电池的先进纳米材料”的特刊。本期特刊从不同角度强调了材料-器件研究的主要意义,结合了现代实验方法和理论模拟。我们从这个令人兴奋的领域收集了 10 篇特色文章,涵盖了用于 LED 和 SC 开发的先进纳米材料的新兴概念、策略和技术。简化的有机 LED(OLED)结构和可行的制造工艺在照明中起着关键作用。 Xu 等人结合了超薄非掺杂发射纳米层(0.3 纳米),展示了低效率滚降和结构简单的 OLED。同时,Xie 等人通过使用含硼和氮原子的分子作为客体发射极,开发了溶液处理的蓝色热激活延迟荧光 OLED,其半峰全宽较窄为 32 纳米,获得高色纯度 OLED。另一方面,开发新型溶液处理的空穴注入材料对于高性能 OLED 至关重要。Zhu 等人合成了二硫化钼量子点(MoS 2 QDs)并展示了具有混合聚(3,4-乙烯二氧噻吩)/聚(苯乙烯磺酸盐)(PEDOT:PSS)/QDs 空穴注入层的绿色磷光 OLED。采用PEDOT:PSS/MoS 2 空穴注入层的OLED最大电流效率为72.7 cd A −1,比单一PEDOT:PSS的OLED高28.2%,表明以硫化物QD作为空穴注入层是实现高效OLED的有效方法。GaN基LED也是很有前途的照明和显示设备。Zhang等人从实验和数值两个方面系统地研究了台面尺寸减小对InGaN/GaN LED两个横向维度的影响,为设备小型化提供了见解。而Lu等人制作并展示了各种尺寸的应变减小微型LED,并研究了尺寸对光学特性和量子阱铟浓度的影响。他们的工作为实现微型LED的高功率性能提供了经验法则。另一方面,Liu等人对GaN基LED进行了系统的研究,提出了一种新的方法来降低应变,提高LED的效率。采用氢化物气相外延与激光剥离技术联合制备缓冲层,在双抛光蓝宝石衬底上制备了厚度约为250 μm的2英寸自支撑GaN衬底,为高功率GaN基器件提供了一条途径。
摘要:采用固相合成、研磨、压制和烧结工艺制备了含有堇青石、莫来石、SiO 2 玻璃和 SiO 2 -B 2 O 3 -Al 2 O 3 - BaO-ZrO 2 玻璃的玻璃陶瓷复合材料。使用加热显微镜、差示热分析、热重法、扫描电子显微镜、能量色散光谱、X 射线衍射分析、阻抗谱、透射法和时域光谱 (TDS) 检查了 Hz-MHz、GHz 和 THz 范围内的热行为、微观结构、成分和介电性能。获得的基板表现出 4.0-4.8 的低介电常数。自发形成的封闭孔隙取决于烧结条件,被认为是降低有效介电常数的一个因素。
摘要:通过固态合成和烧结,基于两个铜硼酸盐和Cu 3 b 2 O 6的新陶瓷材料,并将其表征为低介电介电介电常数的有希望的候选者,用于很高的频率电路。使用加热显微镜,X射线衍射测量法,扫描电子显微镜,能量分散光谱镜检查和Terahertz时间域光谱研究了陶瓷的烧结行为,构成,显微结构和介电特性。研究表明,频率范围为0.14–0.7 THz的介电介电常数为5.1-6.7,介电损失低。由于低烧结温度为900–960℃,基于铜硼酸盐的材料适用于LTCC(低温涂层陶瓷)应用。
研究了五苯薄膜在氧化锡(ITO)涂层玻璃上的物理和结构特性。使用20、30和60分钟的沉积时间的热蒸发方法沉积了五苯薄膜。现场发射扫描电子显微镜(FESEM)图像显示,膜厚度随沉积时间的增加而增加,在60分钟时出现了散装相位层。通过五射线衍射(XRD)模式证明了与15.5Å晶格间距相对应的薄膜相位的存在,其沉积时间为20和30分钟。同时,在沉积时间为60分钟,晶格间距为14.5Å,在五苯甲酸膜中验证了散装相的存在。原子力显微镜(AFM)的五苯甲烷膜结晶度的图像显示,沉积在Ito涂层玻璃上的五苯甲烯膜表现出具有模块化晶粒的相似岛屿的形成,从而产生了细晶体结构。从电流 - 电压(I-V)和电流密度 - 电压(J-V)特性中,五苯甲烯薄膜是欧姆的,并且随着五苯苯乙烯的厚度的降低而增加。五苯甲烯膜在透明底物上的宽带和窄带光电设备的发展中显示出潜力。
摘要:研究了溶液法制备的银 (Ag) 纳米粒子修饰多壁碳纳米管 (MWNT) 填充硅胶复合膜的电性能。使用亚硫酰氯将原始 MWNT 氧化并转化为酰氯功能化的 MWNT,随后将其与胺基封端的聚二甲基硅氧烷 (APDMS) 发生反应。随后,用银纳米粒子修饰 APDMS 修饰的 MWNT,然后与聚二甲基硅氧烷溶液反应形成银修饰 MWNT 硅胶 (Ag-decorated MWNT-APDMS/Silicone) 复合材料。通过透射电子显微镜 (TEM) 观察了含有银修饰 MWNT 和 APDMS 修饰 MWNT 的硅胶复合材料的形貌差异,并通过四探针法测量了表面电导率。 Ag修饰的MWNT-APDMS/硅胶复合膜比MWNT/硅胶复合膜表现出更高的表面电导率,说明可以通过用APDMS和Ag纳米粒子对MWNT进行表面改性来改善Ag修饰的MWNT-APDMS/硅胶复合膜的电性能,从而拓展其应用领域。
完整作者列表:Ozen,Melis;科克大学科学与工程研究生院;科克大学硼与先进材料应用与研究中心 Yahyaoglu,Mujde;科克大学科学与工程研究生院;科克大学硼与先进材料应用与研究中心 Candolfi,Christophe; Jean Lamour 研究所,Veremchuk,Igor;马克斯普朗克固体化学物理研究所,凯撒,菲利克斯;马克斯普朗克固体化学物理研究所、化学金属科学 Burkhardt,Ulrich; MPI CPfS,化学冶金学 Snyder,G.;西北大学,材料科学 Grin,Yuri; MPI CPfS,化学金属科学 Aydemir,Umut;科克大学化学系,化学;科克大学硼与先进材料应用与研究中心
摘要:热电材料早已被证明能有效地将热能转化为电能,反之亦然。自从半导体被用于热电领域以来,人们做了大量工作来提高它们的效率。它们的热电物理参数(塞贝克系数、电导率和热导率)之间的相互关系需要特殊的调整,才能最大限度地提高它们的性能。在开发热电性能的研究中,已经报道了各种方法,包括掺杂和合金化、纳米结构和纳米复合。在不同类型的热电材料中,层状硫族化物材料是具有独特性能的独特材料。它们具有低的自热导率,并且它们的层状结构使它们易于修改以提高其热电性能。在这篇综述中,提供了热电概念的基本知识以及提高性能系数的挑战。文中简要讨论了不同组层状硫属化物热电材料的结构和热电性能。文中还介绍了文献中用于提高其性能的不同方法以及该领域的最新进展。文中重点介绍了石墨烯作为层状硫属化物材料基质的有前途的纳米添加剂,并展示了其对提高其性能系数的影响。
自供电可穿戴电子设备需要热电材料同时具有高的无量纲性能系数(zT)和良好的灵活性,以便将人体排出的热量转化为电能。Ag2(S,Se)基半导体材料可以很好地满足这些要求,因此,它们最近在热电界引起了极大的关注。Ag2(S,Se)结晶为正交结构或单斜结构,具体取决于具体的S/Se原子比,但其晶体结构与机械/热电性能之间的关系迄今为止仍不清楚。在本研究中,制备了一系列Ag2Se1‐xSx(x=0、0.1、0.2、0.3、0.4 和 0.45)样品,并系统地研究了它们的机械和热电性能对晶体结构的依赖性。 Ag 2 Se 1-x S x 体系中 x = 0 : 3 被发现是正交结构和单斜结构之间的过渡边界。力学性能测量表明,正交 Ag 2 Se 1-x S x 样品易碎,而单斜 Ag 2 Se 1-x S x 样品延展性好且柔韧。此外,在相当的载流子浓度下,正交 Ag 2 Se 1-x S x 样品比单斜样品表现出更好的电传输性能和更高的 zT,这很可能是由于它们的电子-声子相互作用较弱。这项研究为柔性无机 TE 材料的进一步发展提供了启示。
研究了后退火对蓝宝石衬底上日盲多晶氧化镓 (Ga 2 O 3 ) 紫外光电探测器的物理和电学性能的影响。随着后退火温度 (PAT) 从 800 °C 升高到 1000 °C,多晶 Ga 2 O 3 的晶粒尺寸变大,但随着 PAT 进一步升高到 1100 °C,晶粒尺寸变小。随着 PAT 的增加,在蓝宝石上的 Ga 2 O 3 的透射光谱的吸收带边缘发生了蓝移,这是由于蓝宝石衬底中的 Al 掺入 Ga 2 O 3 中形成 (Al x Ga 1 – x ) 2 O 3 造成的。高分辨率X射线衍射和透射光谱测量表明,1100°C退火后的(Al x Ga 1 – x ) 2 O 3 的取代Al组分和带隙分别可以达到0.30和5.10 eV以上。1000°C退火样品的R max 与沉积态器件相比提高了约500%,且1000°C退火样品的上升时间和下降时间较短,分别为0.148 s和0.067 s。这项研究为多晶Ga 2 O 3 紫外光电探测器的制作奠定了基础,并找到了一种提高响应度和响应速度的方法。
近年来,热电效应引起了材料科学、固体物理和化学领域的广泛关注。实际上,固态热电转换为能量收集和冷却提供了一种有前途的解决方案[1]。此外,研究热电现象对于理解固体材料中准粒子的基本传输行为也很重要[2]。材料的热电效率用性能系数zT=S2T/ρκ来衡量,其中S、T、ρ和κ分别是热电势、绝对温度、电阻率和热导率。S2/ρ称为热电功率因数。虽然表达式很简单,但获得高zT是一项具有挑战性的任务,因为这些传输参数是相互关联的。作为一项艰巨的任务,我们需要计算材料的热电效率,以确定材料的热电效率。