这种转变还通过对系统硬件(包括集成电路、无源元件(电阻器、电容器、电感器)和印刷电路板)的攻击,为我们的通信基础设施带来了新的漏洞。硬件漏洞可能包括:• 在设计过程中插入恶意功能,• 通过因硬件设计弱点或架构缺陷而存在的非法接入点更改系统行为,• 通过非预期的通信(侧)通道提取敏感或秘密信息,• 通过逆向工程窃取知识产权,• 伪造,包括回收、克隆或重新标记的组件或声称是正品的系统,• 修改以插入隐藏功能。硬件安全性一直是一个问题,并且正在开发许多缓解策略。没有一种方法可以解决这个问题,但新方法可以增强或改进现有方法。
• 增益和频率调整的灵活性:由于运算放大器可以提供电压增益,有源滤波器中的输入信号不会像无源滤波器那样衰减。有源滤波器的调整或调谐非常容易。• 无负载效应:由于运算放大器的输入电阻高、输出电阻低,有源滤波器不会导致输入源或负载的加载。• 成本和尺寸:由于可以使用低成本运算放大器并且不需要电感器,有源滤波器比无源滤波器便宜。• 寄生效应:由于有源滤波器尺寸较小,因此寄生效应较少。• 数字集成:模拟滤波器和数字电路可以在同一 IC 芯片上实现。• 滤波功能:有源滤波器可以实现比无源滤波器更广泛的滤波功能。• 增益:有源滤波器可以提供增益,而无源滤波器通常会产生很大的损耗。
摘要 采用 70 nm GaAs mHEMT OMMIC 工艺 (D007IH) 设计了四级 K 波段 MMIC 低噪声放大器 (LNA)。基于 Momentum EM 模拟结果,四级 LNA 实现了 29.5 dB ±1 dB 的增益、低至 1 dB 的噪声系数 (NF) 和整个波段优于 -10 dB 的输入回波损耗。LNA 芯片尺寸为 2500 µm x1750 µm。由于选择源阻抗以最小化实现输入匹配网络所需的元件数量,因此设计工作流程可以改善 LNA 的 NF 和输入回波损耗。所提出的电路的输入匹配网络由与有源器件的栅极串联的单个锥形八角形电感器组成,从而对第一级实现的 NF 影响很小,并显著改善 LNA 的输入回波损耗。
在电池技术领域,通常采用了两种主要方法进行细胞平衡:被动平衡和主动平衡。被动平衡,其特征在于使用电阻等耗散成分,将多余的能量散发为热量以达到细胞之间的平衡(Wei和Zhu,2009年)。另一方面,主动平衡涉及使用电容器,电感器或变压器等能量存储组件之间电荷之间的转移,从而实现了更有效的能量利用和更快的平衡(Qi和Dah-Chuan Lu,2014年)。设计有效的细胞平衡电路必须在性能,成本和复杂性之间保持仔细的平衡。平衡技术和电路配置的选择取决于各种因素,包括电池单元的类型,应用程序要求和成本注意事项(Weicker,2013年)。
新的 48V 技术已在电动机系统中标准化,以减少电动汽车 (EV) 的排放。它取代了传统的 12V 系统,提供额外的高电压电池来满足增加的功率需求。除了动力系统的电动机和电池组外,48V 系统还具有其他直接操作的优势,例如加热和空调应用。该技术提高了功率能力,可用于启动时更重的负载,例如空调和催化转化器。这进而推动了适合 48V 配置的本地 DC-DC 转换器和无源元件(包括电容器和电感器)的进步。这样的发展可能导致该技术在全电池电动系统中得到广泛采用,从而有助于将电池组的 400 或 800 V 输出转换为 48 V 以分配到整个车辆。
TPS7H4001-SP 和 TPS7H4003-SEP 是集成 FET 的高电流 (18 A) 降压转换器,其主要特性是能够并联最多 4 个相位相差 90 度的器件,而无需外部时钟,旨在满足核心轨道上对更高电流日益增长的需求。0.6 V 基准电压使它们能够满足此轨道通常的低电压要求。TPS50601A-SP 是一款较小的 6 A 高效降压转换器,拥有十多年的实际使用经验,用于为许多辅助轨道供电。封装兼容的 TPS7H4002-SP 也可用于为辅助轨道供电,因为它在架构上与 TPS50601A-SP 非常相似,但电流限制较低,适合较小的电感器尺寸。对于类似的 6 A 抗辐射设计,TPS7H4010-SEP 在 4×6 mm WQFN 封装中提供了极其紧凑的设计,并且是 32 V in 下空间级开关稳压器中最宽的 V 值。
储能系统 (ESS) 可以提高可再生能源占比较高的电力系统的服务可靠性。本文介绍了一种可以将 ESS 直接集成到 HVDC 系统中的转换器拓扑。该拓扑由一个储能子模块 (ES-SM) 分支和一个电感器组成。ES-SM 基于半桥,通过直流/直流转换器连接到超级电容器或电池。该拓扑可扩展到不同的电压水平,并且由于储能元件分布在所有子模块中,因此它提供了高度的冗余。在这项工作中,转换器拓扑使用平均模型建模,其控制旨在调节注入的直流功率和 ES-SM 的能量。还提供了拓扑主要元素的初步尺寸。模拟表明,ES-SM 既可以从 HVDC 系统注入和吸收功率,同时保持 ES-SM 电容器中的所需能量。
摘要 — 本文讨论了一种基于三级改进型反相器结构的多级互阻抗放大器 (TIA)。通过添加两个级联晶体管,传统反相器结构的性能得到了改善。与传统反相器相比,这种新结构的优点是消除了米勒电容,可以提供更高的速度和更宽的频率带宽。除了使用 G m / ID 技术外,本文还权衡了带宽、增益和功耗之间的平衡,介绍了一种用于光通信接收机系统中高比特率的低功耗互阻抗放大器。此外,还使用了有源电感器来减少占用面积并增加频率带宽。将改进电路的极点转移到更高的频率意味着在固定带宽范围内所需的直流电流更少,从而实现低功耗特性
在现代微波炉和MMWave通信系统的设计过程中,设计人员必须表征设备(晶体管,电容器,电感器等)在从DC附近到远远超出设计的工作频率的广泛频率。设备表征的过程生成了电路模拟过程中使用的模块,并且模型的准确性决定了模拟的准确性,因此,首次转弯成功的机会。用于模型精度的重要元素是对电路运行频率远远超出电路频率的设备的表征,在许多情况下,表征远远超过110 GHz。超宽宽带VNA,例如具有70 kHz至220 GHz单扫描功能的VectorStar™ME7838G,提供了行业领先的测量值,并启用了准确模型和电路模拟的最佳设备特性。
新的 48V 技术已在电动机系统中标准化,以减少电动汽车 (EV) 的排放。它取代了传统的 12V 系统,提供额外的高电压电池来满足增加的功率需求。除了动力系统的电动机和电池组外,48V 系统还具有其他直接操作的优势,例如加热和空调应用。该技术提高了功率能力,可用于启动时更重的负载,例如空调和催化转化器。这进而推动了适合 48V 配置的本地 DC-DC 转换器和无源元件(包括电容器和电感器)的进步。这样的发展可能导致该技术在全电池电动系统中得到广泛采用,从而有助于将电池组的 400 或 800 V 输出转换为 48 V 以分配到整个车辆。