摘要 :脑内神经递质多巴胺 (DA) 的含量异常与帕金森病、阿尔兹海 默症等神经系统类疾病的发生发展密切相关,精准、实时监测其脑 内含量可作为临床诊疗的重要参考。电化学分析法具备成本低、响 应快、可实现体内实时监测等优势。然而,脑内复杂环境中蛋白吸 附、多物质共存等因素会极大干扰多巴胺的定量分析,这对电极的 灵敏度、选择性和稳定性提出了极高的要求。因此,研发出满足要 求的电极材料是实现多巴胺电化学检测临床应用的关键。掺硼金刚 石 (BDD) 电极生物相容性好、背景电流低、电势窗口宽、抗吸附性 强、化学稳定性高,相较于易团聚、易脱落而失效的金属纳米颗粒 或电阻较大的高分子材料, BDD 电极更具潜力解决上述多巴胺检测 的难点问题。然而, BDD 电极虽能有效抵御蛋白吸附,但在多巴胺 的选择性检测方面存在不足: BDD 电极表面缺乏能够高灵敏度、高 选择性检测多巴胺分子的官能团。因此,在保持 BDD 本征特性的基 础上,系统研究 BDD 电极表面改性与功能化修饰对电化学检测多巴 胺的选择性、灵敏度和稳定性的影响机理,是 BDD 电极实现临床应 用的关键。基于此,本论文从 BDD 膜电极的功能性改性与修饰到 BDD 微电极体内检测,系统研究了 BDD 膜电极在多巴胺电化学检测 中的作用机理,揭示了 BDD 电极界面性质对多巴胺分子氧化过程的 影响规律,所得具体结论如下: (1) 针对 BDD 电化学活性较低的问题,采用高温溶碳刻蚀和滴 涂修饰方法,在 BDD 电极表面刻蚀纳米孔洞并修饰 Nafion 选择性透 过膜( NAF ),制备了 Nafion 修饰的多孔 BDD 复合电极 NAF/pBDD ; 研究了该复合电极对多巴胺的电化学检测机理,揭示了 NAF/pBDD 复合电极比 BDD 电极具有更多活性位点的原因,同时探究了 Nafion 膜对多巴胺和抗坏血酸的作用机制;该电极针对多巴胺的检测限 (42 nM) 和检测线性范围 (0.1 ~ 110 μM) 相较于 BDD 均得到了有效改善。 (2) 针对 BDD 电极对多巴胺选择性较弱的问题,在 pBDD 表面 修饰活性更高的纳米炭黑颗粒 (CB) ,制备了 NAF-CB/pBDD 复合电 极,研究了炭黑颗粒的加入对主要干扰物抗坏血酸 (AA) 电化学响应 的影响机理,揭示了该电极在高浓度、多干扰物并存环境下对多巴 胺的选择性检测机制。结果表明,该电极可有效将干扰物抗坏血酸 的氧化电位提前以减少对多巴胺信号的干扰,检测限 (54 nM) 和检测
摘要:发光电化学细胞(LEC)是完全解决方案处理的照明应用的有前途的候选者,因为它们可以组成单个活性材料层和空气稳定电极。由于电气双层(EDL)的原位形成,通常认为它们的性能独立于电极材料选择,但我们在概念上和实验上证明了这种理解需要修改。具体来说,观察到激子的生成区域受电极工作函数的影响。我们通过提出促进EDL中的离子浓度合理化了这一发现,取决于电极工作函数与各个半导体轨道之间的偏移,这反过来又影响了用于电化学垃圾的离子数量,从而影响了exociton生成区域。此外,我们研究了电极选择对表面等离子体极化子激子损失的影响,并讨论了腔对激子密度的影响。我们通过证明我们可以通过考虑这些电极依赖性效应的光学模型来复制测得的亮度瞬变来得出结论。因此,考虑到电极材料,主动材料厚度及其共同组成,我们的发现提供了合理的设计标准,以实现最佳的LEC性能。关键字:发光电化学电池,电动双层,激子产生曲线,电极功能,表面等离子体偏振子,光学建模■简介
在不断发展的现代社会社会中,对可再生能源利用和环境保护的需求不断增长,已致力于利用电能转换和存储设备,以最大程度地利用间歇性可再生太阳能和风能[1-6]。在这些电能量存储设备中,锂离子电池(LIB),具有高能量密度,较长的循环寿命和环境良性良性的功能,已广泛应用于便携式电子设备,电动车辆和智能网格中[7-13]。然而,在地壳中含有的锂资源,相关的高成本阻碍了Libs的大规模应用[14-20]。然而,具有类似于李的物理化学特性,钠和钾具有自然界的大量资源。因此,对钠离子电池(SIBS)和钾离子电池(KIBS)进行了广泛研究
如今,可充电锂离子电池已成为现代日常生活中不可或缺的一部分。作为传统储能系统的有前途的替代品,它们具有多种优势。本综述旨在让读者深入了解各种锂离子电池 (LIB) 电极纳米材料的工作机制、当前技术进展和科学挑战。电化学热力学和动力学是我们介绍的两个主要观点,旨在为电极材料的合理设计提供信息基础。此外,阳极和阴极材料都被分为几种类型,并使用一些具体的例子来展示它们的优点和缺点,并提出了一些改进建议。此外,我们总结了纳米结构阳极和阴极材料的合理设计和合成方面的一些最新研究进展,以及它们相应的电化学性能。基于所有这些讨论,总结并提出了 LIBs 进一步发展的潜在方向。
图 1:原位 AFM 测试电池示意图,显示 (a) 电池的横截面和 (b) 电池的平面图。使用出口端口中的阀门应用不同的电解质流动模式,包括 FB,其中电解质流过穿孔工作电极的表面,流通,其中所有电解质都流过电池两侧的电极;以及 FBT 模式,其中一些电解质流过穿孔电极,其余则流过表面。流过电极的电解质通过铜箔下方电流进料器下方的歧管流出。
人类社会的能源消耗很大程度上依赖于传统能源,而这些能源正在以更快的速度枯竭。这些资源不足以满足我们的能源需求。因此,太阳能、水力和风能等可再生能源占据了当前能源消耗的越来越大的一部分。这些能源的电力输出波动性大、间歇性强,这就要求同时实施电化学能量转换和存储技术,如燃料电池、可充电电池和电化学电容器。这些存储技术使可持续能源利用变得简单而高效。1,2 任何可再生能源(如太阳能或风能)产生的电能都可以以
# 组成 # 原子核 # 电子 缩写 1 2 Zn +2 Al + [C 3 H 6 ] 10 94 326 2 Zn + 2 Al + PP 2 2 Zn + 2 Al + [ C 10 H 8 O 4 ] 5 114 586 2 Zn + 2 Al + PET 3 2 Zn + 2 Al + [ C 6 H 4 S] 10 114 646 2 Zn + 2 Al + PPS 4 2 Zn + 2 Al + [C 22 H 10 O 5 N 2 ] 2 82 478 2 Zn + 2 Al + PI 5 3 Zn +1 Al + [C 3 H 6 ] 10 94 343 3 Zn + 1 Al + PP 6 3 Zn + 1 Al + [ C 10 H 8 O 4 ] 5 114 603 3 Zn + 1 Al + PET 7 3 Zn + 1 Al + [ C 6 H 4 S] 10 114 663 3 Zn + 1 Al + PPS 8 3 Zn + 1 Al + [C 22 H 10 O 5 N 2 ] 2 82 495 3 Zn + 1 Al + PI
该碳通过晶格的逐渐溶解最初会引起地下,最终引起块状碳化物。[12,29]对于炔烃半氢化反应,该PDC X相通过抑制对烷烃的过度氢化来提高对烷烃的选择性。[12,13,18,22,29]这种对选择性的影响是多方面的。首先,最大的层阻止氢填充地下。[13]此外,现有的溶解氢通过碳化物相的迁移率降低了。[22,12]最后,碳化物相增加了进料的进一步碳氢化合物的吸附。[29]在低转化率下,藻类的表面中毒作用也是高选择性的原因。[18]这种提高选择性的一些证明包括乙炔,丙烷和1-pentyne的半氢化。[12,22,28,29]
摘要:在过去的十年中,通过便携式电子小工具的快速开发来鼓励能源存储系统的研究。混合离子电容器是一种Nov El电容器 - 电池混合储能设备,由于其高功率数量,同时保持能量密度和较长的生命周期,因此引起了很多兴趣。主要是基于锂的储能技术正在研究用于电网存储。但是,锂储量的价格上涨和间歇性可用性使基于锂的商业化不稳定。因此,已经提出基于钠的技术科学科学作为基于LITH IUM的技术的潜在替代品。钠离子电容器(SICS)是AC知识的,它们是潜在的创新能量存储技术,其具有较低的标准电极电势和比锂离子电容器较低的成本。然而,钠离子的较大半径也有助于不利的反应动力学,低能量密度和短暂的SICS寿命。最近,由于较大的理论能力,环境友好性和SIC的低成本,基于转移的金属氧化物(TMO)候选者被认为是潜力的。这项简要研究总结了TMO和基于钠的TMO的研究作为SIC应用的电极候选物的当前进步。此外,我们详细介绍了SICS TMO的探索和即将到来的前景。关键字:过渡金属氧化物,电极材料,能量密度,功率密度,钠离子电容器。
抽象的Li-Air电池是最重要的下一代电池之一。2D分层材料的开发丰富了液压电池的材料。在这项工作中,提出了对2d Mosi 2 N 4上Li原子的形象和能量的DFT研究。我们提出2D MOSI 2 N 4作为Li-Air电池的阳极和阴极材料的合适材料。2D MOSI 2 N 4的高元素电导率使它成为阳极的优势,而在2d Mosi 2 N 4上,Li 2 O 2生长的低屏障为其作为阴极材料带来了优势。LI负载的MOSI 2 N 4的最大容量预计为129 mAh/g。对于Li负载的MOSI 2 N 4,阳极电势在较大的LI载荷中稳定(相对于Li Bund)稳定(〜 -0.2 V)(Li%= 12〜75%)。作为阴极,在Li 2 O 2平板的生长过程中,开路阴极电势稳定(相对于Li Bulb的2.8 V)。我们的工作揭示了2D最大相的可能性(M是过渡金属,A是Al或Si,而X是C,N或两者兼而有权)作为金属空气电池材料。