必须同时开发具有成本效益,高效且稳定的储能技术,以使可再生能源的可持续性和稳定应用成为现实。事实证明,电力储能(EES)系统在存储从可再生能源为实用应用中产生的电力的电力方面有一个巨大的希望。[9–17]如图1所示,可以将EES系统简要分类(通过以锂离子电池为例),超级电容器和金属离子混合电容器,它们具有不同的特性。众所周知,由于其高能量密度,锂离子电池是电力存储和输送应用的主要EES系统之一。但是,锂离子电池在可再生能源存储和交付中的大规模应用受到锂资源的高成本以及锂离子电池本身的不受欢迎的特征(例如有限的循环寿命和低功率密度)。[18-21]此外,超级速度(也称为电化学电容器)是EES系统的另一种必需类型。它具有高功率密度和较长的周期寿命,但与锂离子电池相比,能量密度不足。[22–24]为了同时实现高能和功率密度,金属离子杂种电容器的概念已经出现。[25–27]和作为概念证明,将锂离子杂种电容器(LIHC)用纳米结构的Li 4 Ti 5 O 12作为负电极材料制成,并活化的碳为非水晶中的正电极材料。[28]提出了金属离子杂种电容器,以有效地结合了蝙蝠和超级电容器的优势,同时最大程度地提高了功率和能量。此外,金属离子混合动力电容器可以消除电池的内在缺点,例如安全性差和严重的自我放电,同时继承了超级电容器长期循环稳定性的优点。,重要的是要注意,这些优点并不意味着金属离子混合动力电容器可以替换电池和超级电容器,尤其是在当前阶段,因为金属离子混合电容器仍然面临几个挑战,尤其是关于可实现的能量和功率密度。在不同类型的金属杂种电容器中,LIHC是具有商业化产品的相对成熟的技术。但是,LIHCS的致命缺点是锂资源的不均匀分配和高成本,这导致了
1。引入工业化的发展,随后是环境污染的增加,可再生能源的能源生产和存储已成为必要[1-4]。近年来,由于许多研究人员的储能性能高[5-9],许多研究人员已经研究了超级电容器。与电池相比,这些设备具有高功率密度和良好的环状稳定性。它们的能量密度也比普通的介电电容器更高,以填补电池和电容器之间的空隙[10-12]。超级电容器分为两类:两层电容器(EDLC)和伪电容器。EDLC中的能量存储不涉及任何法拉第反应,而是通过电极/电解质界面的离子交换来完成。EDLC中使用的电极材料的一个示例可能是高比表面碳材料。取而代之的是,假能力能通过法拉第可逆反应在导电聚合物材料或金属氧化物的表面上存储能量[13-16]。过渡金属氧化物通常比碳基材料更稳定,并且比导电聚合物材料具有更高的能量密度,因此它们是超级电容器电极的良好候选者[17]。
添加剂制造(也称为3D打印)有可能使任何形状的柔性,可穿戴和可定制的电池开发,从而最大程度地提高储能,同时减少死亡重量和音量。在这项工作中,高能密度lini的三维复合电极结构1/3 MN 1/3 CO 1/3 O 1/3 O 2(NMC 111)材料通过增值税光聚合(VPP)过程与创新的先前方法结合使用。这种创新的方法涉及将金属前体盐溶解到紫外聚糖化树脂中,以便将有害的光散射和增加的粘度最小化,然后在印刷物品的热后处理过程中NMC 111的原位合成。在初始树脂中没有固体颗粒,允许生产较小的印刷特征,这些特征对于3D电池设计至关重要。在本研究中彻底描述了紫外聚糖化复合树脂和复杂结构的3D打印,然后对产生NMC 111的热后处理进行了优化。基于这些结果,这项工作通过前体方法解决了3D打印电池的关键方面之一:需要在电化学和机械性能之间妥协以获得功能齐全的3D印刷电极。此外,它讨论了通过VPP工艺限制电池多物质3D打印的差距。
随着经济发展的迅速发展,大量污染物被排放到水环境中,从而严重污染了当地可用的淡水资源[1,2]。在全球范围内,近年来水污染已成为一个热门话题。为了解决这个问题,研究人员提出了化学降水,膜分离,离子交换,蒸馏,吸附和其他技术[3-10]。通常,由于简单的操作过程,普通的吸附剂已被广泛用于水处理领域。它的基本吸附原理是传质过程,其中吸附物从液相转移到通过物理和/或化学作用结合的吸附剂表面。然而,由于次要污染,低恢复和/或低吸附效率,大多数吸附剂在实际应用中受到限制消费,环境保护和简单的再生过程[11-14],这被视为有前途的水处理策略。要选择适当的策略,有必要讨论不同电通系统的吸附机制,主要体系结构,电极材料和应用。
超级电容器是一种重要的电化学储能装置。1~3单个超级电容器由电极、隔膜、电解液和集流体组成,其中电极材料是最重要的组成部分。4超级电容器技术进步的关键在于开发高性能的电极材料。5多孔碳材料在超级电容器电极中得到了广泛的应用,研究日益深入。6,7碳基超级电容器主要利用电极与电解液界面处形成的双电层进行电荷存储。碳材料的孔结构,包括比表面积、孔径及尺寸分布,是决定碳电极材料电容性能的关键。8,9
1.1 简要历史概述 ................................................................................................ 16 1.2 原理和电荷存储机制 ................................................................................ 18 1.2.1 电双层电容器 (EDLC) ................................................................ 20 1.2.2 赝电容器 ...................................................................................... 22 1.2.3 非对称超级电容器(电容式非对称超级电容器与混合超级电容器) ............................................................................. 24 1.3 超级电容器的电极材料 ............................................................................. 26 1.3.1 碳基材料 ............................................................................................. 27 1.3.2 过渡金属氧化物/氢氧化物 (TMOs/TMHOs) ............................................................. 32 1.4 电极材料的合成方法 ............................................................................................. 40 1.4.1 化学气相沉积 (CVD) ............................................................................. 40 1.4.2 电聚合/电沉积 ............................................................................. 41 1.4.3 水热/溶剂热法 ...................................................................................... 41 1.4.4 共沉淀法 .............................................................................................. 42 1.5 电极材料的电化学测量 .............................................................................. 42 1.5.1 超级电容器电极材料的指标 ...................................................................... 42 1.5.2 电极材料的电化学测量 ...................................................................... 43 1.6 论文目标和提纲 ............................................................................................. 50 1.7 参考文献 ............................................................................................................. 53 第 2 章 ............................................................................................................................. 80 用于混合超级电容器的层状双氢氧化物 (LDH) ............................................................. 80
近来,通过控制尺寸和形态缩短电极材料中的离子传输距离,在改善离子传输方面取得了巨大进展。一种通用的策略是合成纳米晶体并将其用作电极材料。[10] 或者,构建电极材料和电解质之间易于接触的分层结构也是另一种可行的方法。[11,12] 例如,离子可以轻松扩散到 3D 多孔石墨烯结构中,实现高倍率能量存储。[13] 值得注意的是,控制电极材料中的离子迁移率,特别是对于高质量负载的电极,是增强能量存储的另一个重要因素。[2,12] 尽管付出了巨大的努力,但取得的进展相对较少
摘要:使用简单的化学浴沉积方法,将纳米结构的铁二硫化物(FES 2)均匀沉积在再生纤维素(RC)和氧化的碳纳米管(CNT)基于氧化的碳纳米管(CNT)的复合膜上,以形成RC/CNT/FES/FES 2复合膜。RC/CNT复合膜是FES 2微球的均匀沉积的理想底物,这是由于其独特的多孔结构,较大的特定表面积和高电导率。polypyrole(PPY),一种导电聚合物,以提高其电导率和循环稳定性。由于FES 2具有高氧化还原活性和具有高稳定性和电导率的PPY的协同作用,RC/CNT/FES 2/PPY复合电极表现出出色的电化性能。用Na 2测试的RC/CNT/0.3FES 2/PPY-60复合电极因此,在1 mA cm-2的电流密度下,水溶液可以实现6543.8 mf cm-2的优异面积电容。电极在10,000电荷/放电周期后保留了其原始电容的91.1%。扫描电子显微镜(SEM)图像显示,在10,000周期测试后,在RC/CNT/0.3FES 2/PPY-60膜中形成了孔径为5-30μm的离子转移通道。由两种相同的RC/CNT/0.3FES 2/PPY-60复合电极组成的对称超级电容器设备提供了1280 MF CM - 2的高度电容,最大能量密度为329μWHCM - 2,最大功率密度为24.9 mW cm-w cm-w cm-w cm-w cm-w cm-2%,且86-2%2%。在40 mA cm-2处的循环在1.4 V的宽电压窗口进行测试时。这些结果表明,RC/CNT/FES 2/PPY复合电极的最大潜力用于制造具有高工作电压的高性能对称超级电容器。
© Springer Nature Switzerland AG 2020 本作品受版权保护。所有权利均由出版商保留,无论涉及全部或部分材料,特别是翻译、重印、重新使用插图、朗诵、广播、在微缩胶片或任何其他物理方式上复制、传输或信息存储和检索、电子改编、计算机软件或通过现在已知或今后开发的类似或不同的方法。本出版物中使用的一般描述性名称、注册名称、商标、服务标记等并不意味着(即使没有具体声明)这些名称不受相关保护法律和法规的约束,因此可以免费用于一般用途。出版商、作者和编辑可以安全地假设本书中的建议和信息在出版之日被认为是真实和准确的。出版商、作者或编辑均不对本文所含材料或可能出现的任何错误或遗漏提供明示或暗示的保证。出版商对已出版地图中的司法管辖权主张和机构隶属关系保持中立。
已经开发出一种基于丙酮的从锂离子电池电极中回收聚偏氟乙烯 (PVDF) 的工艺。首先使用丙酮溶解 PVDF 粘合剂,然后将电极材料在丙酮中搅拌以使其与集电器分层。电极分离成电极材料、PVDF 粘合剂和集电器。测量了 PVDF 在丙酮中的溶解度与温度的关系,发现溶解度随温度升高而增加,在 150 ◦ C 左右达到最大值。测量了纯态和电极中 PVDF 的溶解速率与温度的关系。前者比后者快得多。对 PVDF 从电极中扩散的情况进行了数学建模,以预测材料回收的时间。该研究表明,通过从锂离子电池中回收 PVDF、电极材料和集电器,可以建立直接回收工艺。