I. 引言 LLN 是许多物联网 (IoT) 解决方案的基本元素。它们在涉及数百甚至数千台设备的大型部署中提供低功耗无线连接。TSCH 技术在 LLN 中的引入获得了广泛认可,因为它提供了 IIoT 应用所需的确定性操作能力、可扩展性和服务质量 [1],[2]。作为此类应用的构建块,无线通信堆栈有望通过利用 IPv6 协议实现互联网就绪,并应在恶劣的工业环境中提供可靠的连接。此外,预计此类解决方案还将允许网络中的某些设备由电池供电。这很有挑战性,尤其是对于针对使用严重受限的硬件平台的低成本系统优化的 LLN 而言。采用 TSCH 有助于解决许多这些问题。
I. 引言基于有机薄膜晶体管(OTFT)的集成电路最近显示出向更高集成度和更好性能的快速发展。与无机晶体管相比,OTFT 因其成本低、温度低、可快速制造,尤其是与机械柔性和轻质聚合物基板的兼容性而备受期待 [1]。因此,OTFT 有望实现大面积、可弯曲和可卷曲的应用,例如电子纸和平板显示器 [2]。此外,最近的 OTFT 的低压操作能力为集成结合大面积有机电子器件和高性能薄硅芯片的混合解决方案提供了可能性 [3],也使其非常适合电池供电或频率耦合的便携式设备,例如射频识别(RFID)标签 [4]。最后,由于有机半导体与多种溶剂蒸汽具有化学相互作用,OTFT 还可用于化学和生物传感器 [5]。在所有这些
I. 引言基于有机薄膜晶体管(OTFT)的集成电路最近显示出向更高集成度和更好性能的快速发展。与无机晶体管相比,OTFT 因其成本低、温度低、可快速制造,尤其是与机械柔性和轻质聚合物基板的兼容性而备受期待 [1]。因此,OTFT 有望实现大面积、可弯曲和可卷曲的应用,例如电子纸和平板显示器 [2]。此外,最近的 OTFT 的低压操作能力为集成结合大面积有机电子器件和高性能薄硅芯片的混合解决方案提供了可能性 [3],也使其非常适合电池供电或频率耦合的便携式设备,例如射频识别(RFID)标签 [4]。最后,由于有机半导体与多种溶剂蒸汽具有化学相互作用,OTFT 还可用于化学和生物传感器 [5]。在所有这些
3M 718 静电传感器是一种便携式手持式仪器,用于定位和测量静电荷。它可用于定位 ESD 故障区域,是 ESD 控制工程师的宝贵工具。与 718A 空气离子发生器测试套件(单独提供)一起使用,可用于验证和审核空气离子发生器。718 静电传感器由电池供电,具有多种测量功能:范围:可在 0-2 kV 或 0-20 kV 范围内进行测量自动归零:按钮功能可轻松调整为零。无需转动螺丝或刻度盘。保持功能:允许用户“冻结”显示的测量值,以供日后评估自动关机:在 20 分钟不活动后关闭仪器以节省电池电量。
20 世纪 60 年代末,波音公司获得了一份为阿波罗 15、16 和 17 号任务建造月球车的合同。工程师们开发了一种简单的轻型月球车,可以存放在月球探测舱 (LEM) 的外部。这些车辆重 464 磅。可以承载总重达 1600 磅的机组人员、便携式生命支持系统、通讯设备、科学设备、摄影器材和月球样本。月球车 (LRV) 由两个 36 伏电池供电,驱动位于每个车轮上的四个 ¼ 马力电动机,运行范围为 57 英里。然而,由于宇航员便携式生命支持系统的限制,LRV 被限制在距离 LEM 6 英里的半径范围内。图 2.1 显示了月球表面的 LRV。
I. 引言基于有机薄膜晶体管 (OTFT) 的集成电路近年来呈现出快速发展势头,向着更高集成度和更高性能发展。与无机晶体管相比,OTFT 因其成本低、温度低、制造速度快,尤其是与机械柔性和轻质聚合物基板的兼容性而前景看好 [1]。因此,OTFT 有望实现大面积、可弯曲和可卷曲的应用,如电子纸和平板显示器 [2]。此外,近期 OTFT 的低压工作能力为集成大面积有机电子器件和高性能薄硅芯片的混合解决方案提供了可能性 [3],也使其非常适合电池供电或频率耦合的便携式设备,如射频识别 (RFID) 标签 [4]。最后,由于有机半导体与多种溶剂蒸汽具有化学相互作用,OTFT 还可用于化学和生物传感器 [5]。在所有这些
I. 引言基于有机薄膜晶体管 (OTFT) 的集成电路近年来呈现出快速发展势头,向着更高集成度和更高性能发展。与无机晶体管相比,OTFT 因其成本低、温度低、制造速度快,尤其是与机械柔性和轻质聚合物基板的兼容性而前景看好 [1]。因此,OTFT 有望实现大面积、可弯曲和可卷曲的应用,如电子纸和平板显示器 [2]。此外,近期 OTFT 的低压工作能力为集成大面积有机电子器件和高性能薄硅芯片的混合解决方案提供了可能性 [3],也使其非常适合电池供电或频率耦合的便携式设备,如射频识别 (RFID) 标签 [4]。最后,由于有机半导体与多种溶剂蒸汽具有化学相互作用,OTFT 还可用于化学和生物传感器 [5]。在所有这些
I. 引言基于有机薄膜晶体管 (OTFT) 的集成电路近年来呈现出快速发展势头,向着更高集成度和更高性能发展。与无机晶体管相比,OTFT 因其成本低、温度低、制造速度快,尤其是与机械柔性和轻质聚合物基板的兼容性而前景看好 [1]。因此,OTFT 有望实现大面积、可弯曲和可卷曲的应用,如电子纸和平板显示器 [2]。此外,近期 OTFT 的低压工作能力为集成大面积有机电子器件和高性能薄硅芯片的混合解决方案提供了可能性 [3],也使其非常适合电池供电或频率耦合的便携式设备,如射频识别 (RFID) 标签 [4]。最后,由于有机半导体与多种溶剂蒸汽具有化学相互作用,OTFT 还可用于化学和生物传感器 [5]。在所有这些