• 目标:使用连续损伤模型 (CDM) 来告知单粒子模型 (SPM) 中的参数。• 方法:使用给定 CDM 模拟的电压曲线,优化设计变量以最小化 SPM 电压曲线中的差异。• 设计变量:扩散、半径、交换电流密度、过电位
摘要:CO 2的可再生电驱动电解可能是一种可行的碳中性方法,用于生产基于碳的增值化学物质,例如一氧化碳,甲酸,甲酸,乙烯和乙醇。典型的CO 2电解仪源于高功率要求,这主要是由于能量强度阳极反应。在这项工作中,我们通过在阳极处使用基于Nife的双金属催化剂并施加磁场,从而减少了阳极过电势,从而减少了整体细胞能量消耗。对于CO 2电解过程生产CO,在基于电极的电极流动电解酶中,我们证明,在超过-300 mA/cm 2的CO部分电流密度下,可以使用ANODE和/或使用磁性磁力器的Nife catalyst来实现从7%到64%的功率节省。我们将最大CO部分电流密度达到-565 mA/cm 2,在全细胞能量效率为45%的情况下,将2 M KOH作为电解质。t
摘要 本研究研究了三维电化学工艺对外来化合物纺织废水中甲基橙 (MO) 染料污染物的脱色性能。采用具有强氧化电位的电化学技术处理纺织染料,并采用附加吸附技术有效去除废水中的染料污染物。在电流密度为 15 mA/cm 2、能耗为 3.62 kWh/kg 和电流效率为 79.53% 的情况下,MO 去除率约为 98%。在电流密度为 15 mA/cm 2 时,50 mg/L MO 污染物迅速矿化,半衰期为 4.66 分钟。此外,在三维电化学反应器中对石墨插层化合物 (GIC) 进行电极化,以增强直接电氧化和 . OH 的生成,从而提高协同处理效率。利用人工智能(AI)和机器学习(ML)技术,如人工神经网络(ANN)、支持向量机(SVM)和随机森林(RF)算法,对MO污染废水的脱色进行了优化。统计指标表明,模型的优越性顺序为:ANN>RF>SVM>多元回归。人工神经网络(ANN)和随机森林(RF)方法对工艺参数的优化结果表明,电流密度为15 mA/cm 2、电解时间为30分钟、初始MO浓度为50 mg/L是维持电化学反应器电流和能源效率的最佳操作参数。最后,蒙特卡洛模拟和敏感性分析表明,ANN的预测效率最好,不确定性和变异性水平最低,而随机森林的预测结果略好。
惯性静电约束 (IEC) 利用强电场来产生和约束等离子体。它已广泛用于进行核聚变反应,并在商业上用作活化分析的中子源。本研究调查了 IEC 推进器的两种不同放电模式,即“喷射”模式和“喷雾”模式。本文比较了 IEC 系统在各种初步设计方案下的放电特性,例如阴极网格设计和阴极网格尺寸。高分辨率图像用于在多个操作点进行强度分析。基本法拉第探针用于定性记录等离子体电流密度的变化。结果表明,在更负的电位下偏置阴极会导致网格吸收的电流和可见等离子体的可见强度增加。电流和光强度逐渐增加,直到发生从“喷射”到“喷雾”的模式转变。换句话说,“喷射”模式始终先于“喷雾”模式。此外,背景压力和施加的阴极电位被证明是 IEC 设备的两个主要操作变量。最后,当设备以“喷雾”模式运行时,记录到更高的电流密度,然而,在“喷射”模式下,喷出的等离子体更加准直。
使用小型卫星进行低成本空间应用,高分辨率的地球观察,电磁波(X射线,红外线等)的观察器,从天体物体发出的电磁波(X射线,红外线等),甚至是从重力波的观察到。这些任务的推进系统要求包括较大的脉冲和功耗的全部冲动,高响应速度,3位数字投掷范围和低推力噪声。1)以低推进剂和功耗的大量总脉冲,具有发射阴极的离子元素适合作为主要推进系统。对于小型卫星应用,2)功耗是一个重要因素。是电子源的吸引力候选者,因为它的功耗低于传统的阴极(例如空心阴极,微波炉放电阴极或射电频率放电阴极),并且不构成推动力。 它也不涉及容易产生故障的部件,例如阀门和质量流控制器。 电流密度是电子源的吸引力候选者,因为它的功耗低于传统的阴极(例如空心阴极,微波炉放电阴极或射电频率放电阴极),并且不构成推动力。它也不涉及容易产生故障的部件,例如阀门和质量流控制器。电流密度
已成功地用于有效操纵磁化,从而导致了最近的商业STT磁性记忆解决方案。[1]自旋 - 轨道扭矩(SOT),该扭矩(SOT)使用高自旋霍尔效应(SHA)材料中的平面电荷电流产生的平面自旋电流,可以实现对磁磁性的更节能的操纵,并且正在达到商业兼容。[2–4]到目前为止,已经研究了各种高自旋 - 轨道耦合(SOC)材料,包括重金属,拓扑绝缘子(TIS),[5-7]以及最近的拓扑半学(TSMS),[8-11],[8-11] J S | / | J C | ,将其在转换电荷电流密度j c转换为旋转电流密度j s的效率的度量。此外,还研究了高HIM和FM材料层之间的界面工程,以最大程度地跨越界面,以最大化自旋透射式T int。[12–19]有效SOT Spintronic设备的主要挑战是最大化SOT效率,ξ=θSh·t int。[20]
在开发用于金属空气电池的阴极仍然是一个挑战。在此,我们提出了一种新的man-ganese钴丁物双金属自支撑电极作为催化剂,该电极通过水热和钙化方法在碳布上合成。电极可直接用作无粘合剂和涂层的锌空气电池阴极。使用碳布(CC)上使用氮掺杂碳的锰的原位结构可以增加碳表面上的孔,并具有更多的电化学活性位点。在碱性系统中研究了OER性能,结果表明,催化剂的电势为203 mV,电流密度为10 mA·CM -2,这比比较样品优于MNO 2 @NC/CC和CO 3 O 4 @NC/CC。此外,用MNCO 2 O 4.5 @NC/CC材料组装的锌空气电池具有出色的循环性能,并且可以稳定地循环200小时,而电流密度为5 mA·CM -2,而没有明显的电体衰变。
n,通过直接碳化制备具有介孔结构的杂种掺杂的活性污泥生物炭,然后通过腌制修改将其应用于非含锂氧气电池的正极电极。其在阴极中的应用可以以200 mA/g的电流密度提供7888 mAh/g的特定容量。锂氧电池的放电过程将产生
摘要:iii-v半导体发光二极管(LED)是证明电致发冷却的有前途的候选人。但是,异常高的内部量子效率设计对于实现这一目标至关重要。可以防止基于GAAS的设备中统一内部量子效率的重要损失机制是周长侧壁的非辐射表面重组。为了解决此问题,提出了非常规的LED设计,其中从中央电流注入区到设备周边的距离延长了,同时保持恒定的前触点网格大小。这种方法有效地将周长移动到电流密度10 1-10 2 A/cm 2的电流密度以外的横向扩散。在P - I-N GAAS/INGAP双重杂结LED中,用不同尺寸和周长扩展制造的LED,通过将外周向接触距离从250μm扩展到250μm的前触点尺寸,可实现19%的外部量子效率。利用内部开发的光子动力学模型,估计内部量子效率的相对相对增加为5%。这些结果归因于由于较低的周边面积(p/a)比,周长重组的重组显着降低。但是,与通过增加LED的前触点网格大小来降低P/A比相反,目前的方法可以改进这些改进,而不会影响前触点网格下显微镜活性LED所需的最大电流密度。这些发现有助于在LED中进行电致发冷却的进步,并可能在其他专用的半导体设备中有用,在这些专用的半导体设备中,在外围重组是限制的。关键字:电致发冷却(ELC),微型LED(发光二极管),III-V半导体,电流扩散,周边重组,表面钝化
通过减小晶体管面积来增加晶体管密度,这是摩尔定律的要求。从平面 CMOS 技术到 FinFET 技术的范式转变将这种面积缩小趋势延续到 20nm 以下时代。FinFET 中晶体管静电的增强使栅极长度进一步缩小,从而缩小了接触多晶硅间距 (CPP)。同时,对面积缩小的追求也来自宽度(或鳍片间距)和高度尺寸。通过减小鳍片间距和增加鳍片高度,可以提高 FinFET 的电流密度。因此,电路设计人员可以使用更少的鳍片来满足相同的电流要求并同时节省面积,这种方案通常称为“鳍片减少”。然而,上述方法开始显示出收益递减并面临过多的制造挑战。为了进一步提高电流密度并减小面积,未来预计将使用具有高迁移率的新型通道材料(例如 SiGe)和/或具有更好静电性能的新结构(例如插入氧化物鳍式场效应晶体管 (iFinFET)、Gate-All-Around FET、Nanosheet FET)。