图3. (a)室温下电流密度为50 µ Acm -2 时,原始离子凝胶(黑色)和LbL-SiO 2 - g -poly(PEG 4 -VIC)(橙色)的Li||Li电池中锂金属电镀/剥离的循环性能;(b)室温下不同电流密度(50/100/200 µ Acm -2 )下LbL膜的锂金属电镀/剥离性能比较。
图 4. a) PeLED 的能级图。b) 原始器件和 DPPA 改性器件的归一化 EL 光谱。c) 电流密度-电压 (JV) 曲线和亮度-电压 (LV) 曲线。d) EQE-电流密度 (EQE-J) 曲线。e) 30 个器件的统计最大 EQE 值。f) 原始器件和 DPPA 改性器件的操作稳定性。
摘要:在改善锂金属(LI)库仑效率的虽然是电解质设计的重点,但高电流下的性能较少,但与实际应用相关。在这里,我们使用三种类型的弱溶解荧光电解质来评估电荷率依赖性循环稳定性。尽管在低电流密度下的所有三个电解质中都实现了良好的循环寿命,但它们均表现出在各种阈值电流密度(2至5.2 mA cm -2之间)的柔软短路行为。我们将电流依赖性电极形态归因于LI生长和残留的固体电解质界面(RSEI)生长过程。在早期周期中,Li形态指导了RSEI结构的形成。在后来的周期中,RSEI结构部分影响了LI的生长。在低电流密度下,RSEI不均匀,具有较大的空隙,可用于随后的大量锂生长。在高电流密度下,RSEI变得更加致密,这加剧了通过RSEI的高表面/体积比率的生长。在三个弱溶剂荧光电解质中,观察到离子电导率较低的电解质在较少的周期内和较低的电荷电流密度下短。我们的工作表明,电解质中的快速离子传输可能是高能密度锂金属电池> 1c充电的稳定操作的理想特征。■简介
工作压力 膜电阻和 H 2 /O 2 交叉 工作温度 • 主要影响 H 2 交叉和能量 • 交叉电流密度,低于该密度时的能量消耗可以较小 • 交叉电流密度,低于该密度时的能量消耗可以较小 • 电池堆调节温度由能量消耗、热中性电压和 • 最佳膜厚度取决于 • 膜耐久性、工作温度、占空比和工作压力与能量消耗之间的权衡,受以下因素影响
Cheng 等人 [1] 实现了与 Li 0.7 Ti 3 C 2 T 2 相当的容量(1C 电流密度下经过 200 次循环后容量为 100 mAh g −1,电流密度约为 100 mA g −1),而 Wang 等人 [2] 实现了与 ≈ Na 0.5 Ti 3 C 2 T 2 相当的容量(200 mA g −1 电流密度下经过 1000 次循环后容量为 70 mAh g −1,电流密度约为 3C)。隧道电子显微镜(TEM)还显示,在某些情况下可以插入多层 Na,[2] 在原子水平上每个原子级分子式单位可以有一个以上的 Na,即 Na > 1 Ti 3 C 2 T x 。另一方面,Mg 是一种在电池应用中具有挑战性的金属,其扩散速度慢、电解质-电极动力学复杂、质子嵌入和电解质分解问题严重[5–7],在微米级 Ti 3 C 2 T x 上测试时,仅显示出与 Mg 0.004 Ti 3 C 2 T 2 (≈ 1 mAh g − 1,25 次循环) 相当的容量。[3] 使用间隔基增加层间距离 [8] 和/或将 MXene 纳米化 [9,10] 已显示出更高的容量,但很难确定这些容量是由于可逆的 Mg 2 + 嵌入,还是由于表面反应、质子嵌入和/或电解质共嵌入 (如 MgCl + 嵌入的情况)。[5,6,11]
b'porous [13]或树突[14]生长形态。[9]在基于TFSI的电解质中检测到具有不同形状的半球3D颗粒,这是施加电流密度的函数。[12]在Mg(TFSI)2盐电解质中,MGCL 2作为添加剂,连续的剥离和镀金导致SEI层的破裂和改革,从而在相应的断裂部位和不均匀的MG沉积中产生大量有效的电流密度。[13]通过这种机制,半球形沉积物进一步降解为多孔形态和被困的沉积物,这些沉积物是不可逆转地损失的。最极端的非均匀Mg生长形式是树突的形成,在mg阳极下发生的频率要小得多。到目前为止,仅在0.921 MACM 2的电流密度下仅针对MEMGCL的0.5 MOLDM 3溶液检测到树突。[14]'
研究了 O 2 等离子体处理对 Ba 0 : 7 Sr 0 : 3 TiO 3 (BST) 薄膜电特性和介电特性的影响。将沉积态和退火态的 BST 薄膜暴露于 O 2 等离子体后,BST 薄膜的漏电流密度可以得到改善。通常,在施加 1.5 V 电压下,与未经等离子体处理的样品相比,漏电流密度可以降低 3 个数量级。研究发现,等离子体处理改变了表面形貌。BST 薄膜的电容降低了 10% 至 30%。等离子体处理样品的漏电流密度的改善和介电常数的降低可归因于 BST 薄膜中碳污染的减少。时间相关电介质击穿 (TDDB) 研究表明,所有样品在 1 V 电压偏置下均有超过 10 年的使用寿命。© 2000 Elsevier Science Ltd. 保留所有权利。
工程应变加统一。d,Pt 电极和 BC-CPH 在第 1 次、第 5,000 次和第 10,000 次循环的电流密度与电位图。e,Pt 电极和 BC-CPH 的电荷存储容量 (CSC) 与循环伏安法 (CV) 循环的关系。f,Pt 电极和 BC-CPH 在第 1 次和第 1M 次循环的双相输入脉冲 (顶部) 和相应的电流密度与时间图 (底部)。g,Pt 电极和 BC-CPH 的电荷注入容量 (CIC) 与电荷注入循环的关系。全部 10
通过对不同长度 (L) 的线路进行实验,在不同的电流密度 (j) 下施加应力,并使用技术上可行的三级结构,研究了双大马士革铜互连中的电迁移短长度效应。这项调查是对成熟的双大马士革铜工艺后短长度效应的完整研究。使用寿命测量和随时间变化的电阻衰减来描述这种现象。已经发现,随着电流密度-长度乘积的减小,对数正态分布的 sigma 会增加。临界体积的统计分布很好地符合 sigma 曲线。由于背应力引起的 TTF(失效时间)分散,较低的 jL 2 值显示较大的 sigma 值。提出了一个简化方程来分析特定温度下电流密度和线长的各种组合的实验数据。所得的阈值长度乘积 (jL) C 值似乎与温度有关,在 250-300 C 范围内随温度升高而降低。 2007 Elsevier Ltd. 保留所有权利。
图S1。 通过正弦脉冲类似阳极氧化的NaA – GIF制造。 a)代表性的全输入正弦电流密度曲线(黑色实线)和代表性的全输出正弦电压曲线(红色实线)。 初始部分中电压曲线向更高的电压值的轻微偏差与纳米孔的不均匀生长有关,从光滑的表面开始。 b) Magnified view (down left in blue dash line) of one period at the beginning of the electrochemical process with graphical definition of input anodization parameters: J max – current density amplitude, J average – current density average, T – anodization period and the output parameters in voltage profile: V average – average voltage during the anodization process, V max – output voltage amplitude. 当输入阳极氧化电流发生变化时,由于电流恢复过程缓慢而导致的输入电流密度曲线和电压轮廓之间存在时间延迟; c)放大了代表性输入和输出正弦电流密度和电压曲线(在黄色仪表线中向下),其图形定义是在制造电化学过程结束时参数的图形定义。图S1。通过正弦脉冲类似阳极氧化的NaA – GIF制造。a)代表性的全输入正弦电流密度曲线(黑色实线)和代表性的全输出正弦电压曲线(红色实线)。初始部分中电压曲线向更高的电压值的轻微偏差与纳米孔的不均匀生长有关,从光滑的表面开始。b) Magnified view (down left in blue dash line) of one period at the beginning of the electrochemical process with graphical definition of input anodization parameters: J max – current density amplitude, J average – current density average, T – anodization period and the output parameters in voltage profile: V average – average voltage during the anodization process, V max – output voltage amplitude.当输入阳极氧化电流发生变化时,由于电流恢复过程缓慢而导致的输入电流密度曲线和电压轮廓之间存在时间延迟; c)放大了代表性输入和输出正弦电流密度和电压曲线(在黄色仪表线中向下),其图形定义是在制造电化学过程结束时参数的图形定义。