图1:测定实验中电流诱导的力。(a)KERR显微镜图像显示了一个限制在40μm×7μm的带有漏斗类的丝线中的单个Skyrmion(深色斑点)。左侧和右侧的金触点允许沿线施加电流。(b-d)我们的方法的逐步应用为2.14∙106 A/m 2的电流密度。(b)用于施加在左侧(蓝色)和右(红色)的电流的偏置的天空分布。(c)产生的偏置PMF。(d)推断的纯固定能量景观(蓝色)和推断的纯力偏置(红色)。力偏置的中央区域的线性拟合(虚线黑线)的斜率等于天空上的力。(e)电流诱导的力对施加电流密度的强度图。通过将天空轨迹分为三个部分,并使用力偏差斜率的平均值和标准误差来估计数据点的误差。测量已在名义上的两个不同的设备上进行了与数据点颜色所示的同一样品上相同几何形状进行的。这些点进行调整以纠正Skyrmion尺寸的偏差;原始点以灰色给出。交叉表示模拟结果。
表 1.4. 通过不同的测量方法,得到不同电极和电解质的 Ce 3+ /Ce 4+ 电荷转移动力学参数。报告的动力学参数包括标准速率常数 𝑘 0 、交换电流密度 𝑖 0 、还原峰和氧化峰之间的分裂 𝛥𝐸 𝑝 以及阳极和阴极电荷转移系数 𝛼 𝑎 和 𝛼 𝑐 。在正文中,我们报告电荷转移系数时指的是阴极电荷转移。 ................ 27
电沉积是制备合金的重要方法之一。利用电沉积合成合金的方法引起了广泛关注,因为它能够在室温下在金属基材上制备合金薄膜。到目前为止,含有六价铬(Cr 6 +)离子的电解槽已用于金属铬的电沉积。然而,众所周知,Cr 6 + 离子会引起有害的环境污染[4,5]。在欧盟,WEEE/RoHS(废弃电子电气设备/限制在电子电气设备中使用某些有害物质)指令限制使用Cr 6 + 离子[6]。因此,作为一种替代工艺,许多研究人员提出了从含三价铬(Cr 3 +)离子的电解槽中电沉积金属铬合金(例如 Co e Cr 和 Ni e Cr 合金 [7]、Fe e Cr 合金 [8] 和 Fe e Cr e Ni 合金 [9])。然而,众所周知,电沉积的电流效率受到很大限制,因为 Cr/Cr 3 + 的标准电极电位为 0.937 V(vs. Ag/AgCl/饱和 KCl),远不如铁族金属(例如 Ni/Ni 2 +、Co/Co 2 + 和 Fe/Fe 2 +)的电位高 [10]。在从水溶液中电沉积次贵金属的过程中,随着电流密度的增加,阴极附近的pH值升高[11]。pH值升高的原因是高电流密度下氢气析出速率高,导致阴极附近的H+离子消耗速率高。因此,在简单的水溶液中,Cr3+离子在高电流密度下会与阴极附近的六个水分子形成复合物[Cr(H2O)6]3+。具体而言,这些[Cr(H2O)6]3+离子会在酸性pH区(pH > 4.5)通过羟桥反应形成羟基桥接胶体聚合物[12,13]。阴极附近的这种胶体聚合物会抑制金属铬的电沉积。因此,通常在水溶液中加入甘氨酸、尿素或 N,N-二甲基甲酰胺 (DMF) 等络合剂来抑制 [Cr(H 2 O) 6 ] 3 + 离子的形成。在这些络合剂中,DMF 是众所周知的在金属电沉积过程中减少氢析出的有效络合剂 [14]。之前有几种
电介质中的电偏振,电位移电流;麦克斯韦电场方程的简介,电流密度的连续性方程,修改磁场卷曲的方程式以满足连续性方程。麦克斯韦在真空和非导电介质中的方程,电磁场中的能量,能量流和poynting载体,示例,波浪方程,真空中的波平方,平面电磁波及其横向性质,偏振,偏振,电磁波和磁场之间的电磁波和磁场之间的关系。
摘要:混合有机 - 无机金属卤化物钙钛矿(HOIP)由于其出色的光电特性,已成为一种有希望的可见光感应材料。尽管有优势,但克服商业化的稳定问题仍然是一个挑战。在此,通过全瓦库姆工艺证明了一个极为稳定的光电探测器,并用CS 0.06 fa 0.94 pb(I 0.68 BR 0.32)3 per-Ovskite制造。在标准的一个太阳太阳照明下,光电探测器达到的电流密度高达1.793×10-2 a cm -2,同时在零偏置电压下保持电流密度低至8.627×10-10 - 10 a cm -2。线性动态范围(LDR)和瞬态电压响应与基于硅的光电探测器(Newport 818-SL)相当。最重要的是,该设备在一个太阳太阳照明下不断暴露后,保持了95%的初始性能的95%。这些出色的结果的成就促成了全面的沉积过程,从而提供了具有很高稳定性和良好均匀性的薄膜,从而延迟了退化过程。通过阻抗光谱法进一步研究了降解机制,以揭示在不同暴露时间下光电探测器中的电荷动力学。关键词:钙钛矿,光电探测器,稳定性,特定探测率,热蒸发</div
ISA-WELD® ISA-WELD® 电阻器由实心电子束焊接复合材料冲压而成,该复合材料由铜和我们的电阻合金之一(例如 MANGANIN ® 或 ZERANIN ®)组合而成。电阻器可通过冲压和弯曲进行调整,以适应几乎任何形状和应用。铜端子的输入电阻相对较低,热导率高,储热能力强,分流器内的电流密度和散热量也高,这些优点还体现在以下方面。ISA-WELD ® 分流器特别适用于极低欧姆值(在 0.5 至 5 mOhm 范围内)。它们可用作 SMD 或母线组件。
ISA-WELD ® 电阻器由实心电子束焊接复合材料冲压而成,该复合材料由铜和我们的电阻合金(例如 MANGANIN ® 或 ZERANIN ® )组合而成。电阻器可通过冲压和弯曲进行调整,以适应几乎任何形状和应用。铜端子的输入电阻相对较低,热导率高,储热能力强,分流器内的电流密度和散热量也高,这些优点进一步体现出来。ISA-WELD ® 分流器特别适用于极低欧姆值(在 0.5 至 5 mOhm 范围内)。它们可用作 SMD 或母线组件。
本研究通过一个设计用于太空应用的 10 千瓦碱性燃料电池案例,逐步介绍了最新的燃料电池基础知识、热力学和电化学原理以及系统评估因素。该系统还产生 100 公斤纯水和 5.5 千瓦热量。该系统使用 MATLAB 和 ANSYS Fluent 建模。然后,使用文献中的理论和实验结果验证该模型。对各种设计和操作参数以及材料选择进行了参数研究,以优化整体性能。在 150 mAcm-2 电流密度下获得 0.8 V 的净输出电压,总效率为 75%。结果表明,增加电解质厚度或工作温度会导致净电压输出降低。此外,通过了解不同参数对最小化双极板压降的贡献,可以提高燃料电池通过双极板的性能。我们发现,通过优化选择流体流速、通道宽度、通道深度、通道数量和电流密度,可以最大限度地降低整个双极板的压降。相对湿度对压降有显著影响。结果表明,增加相对湿度会导致压降上升。最后,CFD 模拟表明,由于这些位置的停滞特性,双极板中的端区会积聚流体。因此,这些位置的总压力最高。本文的主要贡献之一是研究 KOH 浓度对不同工作温度下 AFC 性能的影响。此外,还分析了各种设计和操作参数,以了解它们对燃料电池整体性能的影响。
如果要合理设计高效、明亮的发射技术,理解“效率滚降”(即发射效率随电流增加而下降)至关重要。新兴的发光电化学电池 (LEC) 可以通过环境空气打印以成本和能源高效的方式制造,这得益于 pn 结掺杂结构的原位形成。然而,这种原位掺杂转变给有意义的效率分析带来了挑战。本文介绍了一种分离和量化主要 LEC 损耗因素(特别是出耦合效率和激子猝灭)的方法。具体而言,测得常见单线态激子发射 LEC 中发射 pn 结的位置随电流的增加而显著移动,并量化这种移动对外耦合效率的影响。进一步验证了 LEC 特有的高电化学掺杂浓度在低驱动电流密度下就已经使单重态极化子猝灭 (SPQ) 变得显著,而且由于 pn 结区域中极化子密度的增加,SPQ 还会随着电流的增加而超线性增加。这导致 SPQ 在相关电流密度下主导单重态-单重态猝灭,并且显著有助于效率下降。这种解释 LEC 效率下降的方法有助于合理实现在高亮度下高效的全印刷 LEC 设备。
我们研究了空间曲率和拓扑结合对真空状态的性质的构造效应,用于旋转对称的2D弯曲管上的带电标量。对于一般的空间几何形状,对于具有一般阶段的准静脉条件,在明确提取拓扑贡献的情况下,提供了Hadamard函数的表示。作为真空状态的重要局部特征,研究了当前密度的期望值。真空电流是由管子量子周期封闭的磁孔的周期性功能。为恒定半径和圆锥管指定了通用公式。作为另一种应用,我们考虑了在Beltrami伪球层上标量场的Hadamard函数和真空电流密度。为相应的期望值提供了几种表示。对于管的适当半径的小值,与曲率半径相比,空间曲率在真空电流上的影响很弱,并且在相应膨胀中的主要术语与恒定半径管上的电流密度相吻合。曲率的影响对于大于空间曲率半径大的管的适当半径至关重要。在此限制中,当前密度的秋季效果作为适当半径的函数,遵循无质量和大型领域的幂律。这种行为与恒定半径管的形式明显形成鲜明对比,并具有巨大的场的指数衰减。我们还比较了Beltrami伪层上的真空电流以及局部的保姆和抗DE保姆2D管上的真空电流。