电源控制通常用于确保通信系统中有效的资源液化。由于环境能源的间歇性和随机性,其在能源收集通信的新兴范式中变得更加重要。本专着提供了基本功率控制策略及其性能分析的重新查看,以独立且相同分布的能量到达的基本设置的基本环境。分别考虑了三种不同的设置,即离线功率控制,线电源控制和使用LookAhead的功率控制,分别与对能量到达过程的非因果,因果关系和部分非因果知识的案例相对应。提出了最佳离线电源控制策略的完整表征。在线设置中,将重点放在贪婪的政策上,该政策在低温容量制度中是最佳的,并且普遍近乎最佳的策略,其中包括Maximin Optimal
7 IEEE STD 1547-2018将管理互连要求(AGIR)定义为“定义,编纂,通信,管理和强制允许DER电气互连到该区域EPS的策略和程序的认知和负责任的实体。这可能是监管机构,公共事业委员会,市政当局,合作社董事会等。AGIR参与程度在跨管辖范围内的应用范围和执法级别方面有所不同。该机构可以由该地区EPS操作员或批量电力系统运营商委托和负责任的实体委派。注释 - 管理互连要求的权限的决定应考虑各种利益相关者的利益,包括但不限于加载客户,区域EPS运营商,DER运营商和批量电力系统运营商”(IEEE 1547-2018)。
尽管频率响应分析通常使用专用设备进行,但可以使用较新的示波器来测量电源控制环路的响应。这种分析通常被称为亨德里克·韦德·波德 (Hendrik Wade Bode) 的波特图。传统上,这种分析使用 FFT 算法来测量系统在目标频率范围内的增益和相位。一些新型示波器(例如 4、5 和 6 系列 MSO)在所有通道上采用专用数字下变频器,这些下变频器独立于时域采样率和记录长度运行。此功能称为“频谱视图”,以区别于传统 FFT,可用于改善频率响应分析的结果。本白皮书使用传统 FFT 和频谱视图对两种不同的被测设备 (DUT) 的波特图(也称为控制环路响应)进行了比较。
电力电子技术在现代电力系统中的渗透率不断提高,对整个系统的稳定性提出了挑战,需要更先进的控制策略来解决这些问题。其中一个挑战是可再生能源的变化,包括光伏 (PV) 系统,它们通常具有不确定性和间歇性(不可调度)。在这方面,灵活的功率控制解决方案对光伏系统具有很高的兴趣,这是智能光伏逆变器的一项基本功能,可以最大限度地减少电网整合和运行中的不利影响。另一方面,光伏系统可以通过功率控制提供辅助服务,例如电压和频率支持。因此,本文概述了灵活有功功率控制 (FAPC) 的最新进展,该控制使智能光伏系统能够实现电网友好型整合。从电网的角度介绍了对 FAPC 的需求。然后,回顾了各种 FAPC 方案,其中通过修改最大功率点跟踪 (MPPT) 的控制策略是最可行和最有效的,无需任何硬件修改。这被称为灵活功率点跟踪 (FPPT),并通过案例研究进一步说明。此外,还详细讨论了促进电网全面电压和频率支持的功率储备控制 (PRC)。还介绍了未来的研究前景。
概述:SP-1000X最多可同时运行两个(2)24VDC恐慌硬件设备。它旨在处理高电流恐慌硬件锁定设备的需求。每个锁定输出都有一个可调节的重置延迟计时器。它将同时或独立控制两个单独的门控制一对门。它具有每个输出的追随者继电器,用于触发外部继电器,ADA推板开关等。延迟的追随者继电器控制自动门操作员的门,这些门操作员总是被锁定或在工作日解锁的门。此外,还为读取卡,键盘,雷克斯pir,电子计时器,继电器等提供了两个未切换的辅助电压输出。可配置的FACP接口将在激活时为锁定输出提供电源或删除电源。提供LED状态指标以监视AC功率,FACP状态和锁定输出接线监督。智能逻辑提供了防止锁输出意外短路的保护。
io_set_cpg :执行 PLL 初始化 WDT.WRITE.WTCSR = 0xa51e; => WDT 停止,WDT 计数时钟设置 => 1/4096 x P 时钟(50MHz;20.97 毫秒) WDT.WRITE.WTCNT = 0x5a85; => 计数器初始设置 10 毫秒 CPG.FRQCR.WORD = 0x0303; => Clockin = 12.5MHz => I 时钟 = 200MHz,B 时钟 = 50MHz => P 时钟 = 50MHz CPG.MCLKCR.BIT.MSDIVS = 1; => MTU2S = 100MHz CPG.ACLKCR.BIT.ASDIVS = 3; => AD = 50MHz STB.CR3.BYTE = 0x02; => 模块待机清除 => HIZ、MTU2S、MTU2、POE2、IIC3、ADC0、保留(1)、FLASH STB.CR4.BYTE = 0xE2; => 模块待机清除 => SCIF3、保留(0)、CMT、保留(1)、EtherC STB.CR5.BYTE = 0x12; => 模块待机清除 => SCI0、SCI1、SCI2、SCI4、ADC1 pfc_init:执行 MTU2 初始化 ADC0.ADCR.BIT.ADCS = 0x0; => AD0 初始化 ADC0.ADANSR.BIT.ANS0 = 0x1; ADC0.ADANSR.BIT.ANS1 = 0x1; ADC0.ADANSR.BIT.ANS2 = 0x1; ADC0.ADANSR.BIT.ANS3 = 0x1; ADC0.ADBYPSCR.BIT.SH = 0x1; ADC1.ADCR.BIT.ADCS = 0x0; => AD1 初始化 ADC1.ADANSR.BIT.ANS0 = 0x1; ADC1.ADANSR.BIT.ANS1 = 0x1; ADC1.ADANSR.BIT.ANS2 = 0x1; ADC1.ADANSR.BIT.ANS3 = 0x1; MTU2S.TSTR.BYTE = 0x0; => 清除 MTU2S 计数器 MTU2S3.TCR.BIT.TPSC = 0x0; => MTU2S3 TCNT 清除禁用 MTU2S3.TCR.BIT.CKEG = 0x0; => MTU2S3 在上升沿计数 MTU2S4.TCR.BIT.TPSC = 0x0; => MTU2S4 TCNT 清除禁用 MTU2S4.TCR.BIT.CKEG = 0x0; => MTU2S4 在上升沿计数 MTU2S.TDDR = 1; => MTU2S 死区时间 MTU2S3.TGRB = 495; MTU2S3.TGRD = 495; MTU2S4.TGRA = 300; => PFC 输出 MTU2S4.TGRC = 300; => PFC 输出 MTU2S4.TGRB = 200; => PFC 输出 MTU2S4.TGRD = 200; => PFC 输出 MTU2S.TCDR = 500; => 三角波形设置 100K MTU2S.TCBR = 500; => 三角波形设置 100K MTU2S3.TGRA = 501; => 三角波形设置 100K MTU2S3.TGRC = 501; => 三角波形设置 100K MTU2S.TOCR1.BIT.PSYE = 0x1; => 切换输出 MTU2S.TOCR1.BIT.TOCS = 0x1; MTU2S.TOCR2.BIT.OLS3N = 0x0; => TIOC4D MTU2S.TOCR2.BIT.OLS3P = 0x1; => TIOC4B MTU2S.TOCR2.BIT.OLS2N = 0x1; => TIOC4C MTU2S.TOCR2.BIT.OLS2P = 0x0; => TIOC4A MTU2S.TOCR2.BIT.OLS1N = 0x0; => TIOC3D MTU2S.TOCR2.BIT.OLS1P = 0x1; => TIOC3B MTU2S3.TMDR.BIT.MD = 0xF; => 峰值时输出高电平 MTU2S.TOER.BIT.OE3B = 0x1; => TIOC3B 引脚输出 MTU2S.TOER.BIT.OE3D = 0x1; => TIOC3D 引脚输出
除了基本的 ON/OFF 电源切换之外,典型的 SSPC 还提供许多保护功能,包括快速短路保护,使电路停用时间达到 1 mS 左右。电路停用涉及在 500 µS 至 1mS 的时间内逐渐移除通道的开关 MOSFET 栅极驱动,以最大限度地减少 EMI 辐射。参考图 1,对于过载保护,SSPC 实施“I 平方 t”(I 2 t)检测方法来保护电线和负载,同时仍可防止高浪涌电流切换到电机、螺线管、电容负载(如电子电源)或白炽灯泡负载,从而导致“误跳闸”。借助 I 2 t 保护,当测量的负载电流为额定电流的十倍或更多时,SSPC 将立即跳闸。对于较低的电流值,SSPC 的处理器会执行连续计算,从而导致在负载电流为额定值一至十倍的过载情况下跳闸时间更长。
