本文介绍了一种新型一阶全通滤波器配置。所提出的全通滤波器配置采用两种配置,即基于 VDVTA 和 OTA 的一阶全通滤波器配置。所提出的第一种配置采用单个 VDVTA 和一个接地电容器,而所提出的第二种配置采用两个 OTA 和一个接地电容器。所提出的两种配置都是完全电子可调的,其品质因数不依赖于可调极点频率范围。所报告的配置具有较低的主动和被动灵敏度,并且功耗较低,电源电压非常低,±0.85 V,偏置电压为±0.50 V。使用 0.18 µm CMOS 技术工艺参数验证了所提出的 VDVTA 和两个基于 OTA 的一阶全通滤波器配置的 PSPICE 模拟。
参 数 名 称 符 号 条 件 最小 最大 单 位 电源电压 V CC — -0.5 +7 V 输入钳位电流 I IK V I <-0.5V 或 V I >V CC +0.5V — ± 20 mA 输出钳位电流 I OK V O <-0.5V 或 V O >V CC +0.5V — ± 20 mA 输出电流 I O -0.5V
印度专利局已授予印多尔理工学院“PN 调谐差分 8T 静态随机存取存储器 (SRAM) 单元”专利。本发明一般涉及集成电路,更具体地说涉及超低功耗 SRAM。为了降低存储器单元阵列的功耗,电源电压缩放是最优选的方式。电源电压缩放使操作能够在亚阈值范围内进行,其中电路的功耗最小。这是通过选择低于所用金属氧化物半导体场效应晶体管 (MOSFET) 器件的阈值电压的电源电压来实现的。通过 VLSI 设计进行电源电压缩放会受到诸如静态噪声容限 (SNM) 的明显损失、电流波动、限制可能连接到单个位线的单元数量等限制。本发明减少了读取干扰并提高了 SRAM 单元的写入能力,从而在超低功耗操作中更有效地操作 SRAM 单元。本发明还增强了 SRAM 单元在亚阈值区域内对工艺电压温度变化的免疫力。这是通过切断反馈并限制通过真实存储节点到地的电流来实现的,从而提高了 8T SRAM 单元的写入能力和写入速度,允许设置公共写入脉冲宽度,从而提高写入速度。读取操作期间对真实存储节点没有直接干扰,从而降低了芯片间或芯片内变化导致的故障概率。这种新型 SRAM 单元将使设计人员能够构建强大的内存阵列。
一般说明 LM124 系列由四个独立的高增益内部频率补偿运算放大器组成,这些放大器专门设计用于在很宽的电压范围内使用单电源供电。也可以使用分离电源供电,低电源电流消耗与电源电压的大小无关。应用领域包括传感器放大器、直流增益模块和所有传统运算放大器电路,这些电路现在可以更轻松地在单电源系统中实现。例如,LM124 系列可以直接由数字系统中使用的标准 5V 电源电压供电,并且可以轻松提供所需的接口电子设备,而无需额外的 15V 电源。
一般说明 LM158 系列由两个独立的高增益内部频率补偿运算放大器组成,它们专门设计用于在很宽的电压范围内使用单电源供电。也可以使用分离电源供电,低电源电流消耗与电源电压的大小无关。应用领域包括传感器放大器的直流增益模块和所有传统运算放大器电路,这些电路现在可以更轻松地在单电源系统中实现。例如,LM158 系列可以直接由数字系统中使用的标准 5V 电源电压供电,并且可以轻松提供所需的接口电子设备,而无需额外的 15V 电源。
图 6:欠压保护时序图(高侧) Fig 6:Undervoltage protection sequence diagram (High side) b1 : 电源电压上升:当该电压上升到欠压恢复点,在下一个欠压信号被执行前该线路将启动运行。 b1: Power supply voltage rise: When the voltage rises to the undervoltage recovery point, the line will start running before the next undervoltage signal is executed. b2 : 正常运行 : MOSFET 导通并加载负载电流。 b2: Normal operation: MOSFET is turned on and load current is applied. b3 : 欠压检测 (UV BSD ) 。 b3: Undervoltage detection (UV BSD ). b4 : 不管输入是什么信号, MOSFET 都是关闭状态。 b4: No matter what signal is input, MOSFET is off. b5 : 欠压恢复 (UV BSR ) 。
电路在暴露于辐射时。绝大多数商用电路在从海平面到飞机飞行高度(< 20 km)的自然环境中运行,其中错误主要由大气中子与硅的相互作用引起。最初,在 14 MeV 和 100 MeV 中子辐照下,测量了电源电压为 2V 至 5V 的静态存储器的软错误率 (SER)。由于电源电压降低而导致的错误率增加已被确定为未来低压电路运行的潜在危害。提出了一种用于准确表征制造过程 SER 的新方法,并通过对 0.6 jj.m 工艺和 100 MeV 中子的测量对其进行了验证。该方法可应用于预测自然环境中的 SER。
操作模式 执行器由 DC 0 ... 10 V 标准信号控制,并将阻尼器移动到工作位置,同时拉紧回位弹簧。如果电源电压中断,阻尼器会通过弹簧力返回到紧急位置。