在上一课中,您已经了解了导线中的稳定电流会产生稳定磁场。法拉第最初(错误地)认为稳定磁场可以产生电流。他在磁感应电流方面的一些研究使用了与图 19.1 类似的装置。左侧线圈中的电流产生集中在铁环中的磁场。右侧线圈连接到检流计 G,检流计可以指示该电路中是否存在感应电流。观察到,对于稳定电流,G 没有偏转,但是当左侧电路中的开关 S 闭合时,检流计会显示片刻的偏转。同样,当开关 S 打开时,会记录到瞬时偏转,但方向相反。这意味着只有当左侧电路中的电流引起的磁场发生变化时才会感生电流。
摘要:量子纠缠是保证量子通信绝对安全的重要因素。本文系统研究了基于电磁诱导透明(EIT)效应产生光场间的连续变量纠缠或双模压缩。本文提出了一种新方案,通过在EIT系统中引入双光子失谐来增强相干态光探测场和耦合场之间的纠缠度。与传统方案相比,该方案利用基态弛豫(布居衰减或失相)率来产生纠缠或双模压缩,从而给系统带来更多的过剩涨落或噪声,效率更高。此外,在给定光学深度下,可以在较宽的耦合Rabi频率和双光子失谐范围内实现最大纠缠度,表明该方案稳健且灵活。值得注意的是,虽然 EIT 是微扰极限下的效应,即探测场比耦合场弱得多并被视为微扰,但存在探测场与耦合场强度的最佳比率以实现最大纠缠。我们提出的方案可以推进基于连续变量的量子技术,并可能在利用压缩光的量子通信中得到应用。
7.1. Bürkert eShop – 轻松订购和快速交付 ......................................................................................................................................19 7.2. 产品选择建议 ......................................................................................................................................................19 7.3. Bürkert 产品过滤器 ......................................................................................................................................................19 7.4. 订购表 ......................................................................................................................................................................20 SE58 L 变送器 .............................................................................................................................................................20 SE58 M 变送器 .............................................................................................................................................................21 SE58 S 变送器 .............................................................................................................................................................22 7.5. 附件订购表 .............................................................................................................................................................22
摘要。本文介绍了未爆炸弹药 (UXO) 在磁化过程中的物理模型和磁偶极子模型的公式推导。介绍了磁强计和电磁感应传感器在 UXO 检测中的应用。磁强计介绍了CS光泵海洋磁强计的全场测量技术和MagSTAR(Magnetic Scalar Triangulation and Ranging)梯度探测技术;电磁感应传感器介绍了Geophex公司和Geonics Ltd.的工作原理和目前流行的产品型号;美国海军研究实验室的MTADS(多传感器拖曳阵列探测系统)探测UXO的方法比较了与美国海军研究实验室目标识别方法的差异。
我们讨论了一种采用饮水鸟 (DB) 热机械模型的热电能产生 (TEG) 技术。饮水鸟的运动是由熵流产生的,熵流由热力学第二定律解释,而热力学第二定律是热机的基本定律之一。我们提出一种应用于饮水鸟运动的盘式磁铁电磁感应 (DM-EMI)。特别讨论了将 DM-EMI 推广到用于机电能转换的热机以及提取电能的特性。DM-EMI 的电能具有热机产生的机械旋转的有限发电特性,但它对于风力涡轮机、燃煤和核电站的机电能转换的实际应用非常有用。作为一种能量收集技术,DM-EMI 将有助于解决环境问题,保持清洁易得的能源。
将机械振荡器用激光冷却到其运动基态是量子计量、模拟和计算领域的一个持续研究方向[1-4]。特别是,将单个原子定位到远低于光波长(“Lamb-Dicke”机制)是实现原子系统高保真量子控制的先决条件[1,5]。在大的捕获离子晶体中,量子纠缠门利用离子的集体运动[6,7]。这种运动必须在基态附近制备,冷却过程与耦合到环境的加热相竞争[8,9]。因此,开发新方法来实现所有运动模式的高带宽和快速冷却至关重要,这些运动模式用作量子信息处理的量子总线。解析边带冷却(RSC)是冷却机械振荡器的通用工具,对于捕获离子,它是冷却到基态的标准方法[1,10-12]。然而,RSC 时间通常随着振荡器的总质量或链中捕获离子的数量线性增长。通过实施具有单离子寻址的并行 RSC 策略,可以改善大型链的这种缩放比例 [13] 。捕获离子和原子的电磁诱导透明 (EIT) 冷却是另一种众所周知的基态冷却方法 [14 – 20] 。它利用三能级 Λ 系统中的量子干涉 [21] 来创建针对原子运动量身定制的可调窄光谱特征,以实现高效冷却。应用于捕获离子,EIT 冷却允许在很大一部分运动光谱上同时进行基态冷却,而无需单离子寻址 [22 – 24] 。EIT 冷却在简单的三能级系统之外的扩展已经激发了一些理论 [25 – 27] 和实验 [28 – 30] 研究。这种扩展对于量子
量子纠缠、拓扑绝缘体、几何拓扑、超导量子比特、稀磁半导体、随机预言模型、细胞自动机、玻色-爱因斯坦凝聚态、钻石、成像、单分子磁性、电磁感应透明性、分组密码、激子、分子间通信、粒子群优化、二硫化钼、约瑟夫森结、石墨烯、加法数学
PHY 2200。物理学 2。(3 小时)提供为期两学期的代数物理学入门课程的第二学期。强调电和热力学的基本概念和原理。介绍温度、物质的动力学理论、热、热力学定律、电和库仑定律。涵盖的主题包括电荷和场、电势、电流电路、电容、磁力和场以及电磁感应。涵盖的其他主题包括交流电路、磁性、电磁波、光的性质和几何光学。