同步机或旋转变压器是一种用于测量旋转角度的旋转电变压器。这些设备可以描述为具有初级和次级线圈的普通变压器。初级线圈是通常被激励的转子,次级线圈是定子。同步变压器的初级绕组固定在转子上,由正弦电流激励,该电流通过电磁感应使电流在定子上彼此成 120 度固定的三个星形连接的次级绕组中流动。测量次级电流的相对大小并用于确定转子相对于定子的角度,或者可以使用电流直接驱动与同步机同步旋转的电动机。在后一种情况下,整个设备也称为自同步器。同步机激励到转子的输出电压由以下方程式描述:
我们通过实验研究了平面二维阵列鼓面模式的电磁感应透明冷却,其中 Penning 阱中存储了多达 N ≈ 190 Be + 离子。对于所有 N 个鼓面模式都观察到了显著的亚多普勒冷却。对质心模式的定量测量表明接近基态冷却,运动量子数为 ¯ n ¼ 0 。3 � 0 。2 在 200 μ s 内获得。 测得的冷却速度比单粒子理论预测的要快,与量子多体计算一致。对于较低频率的鼓面模式,定量温度测量受到频率不稳定性的限制,但强烈建议全带宽接近基态冷却。这项进展将极大地提高大型捕获离子晶体在量子信息和计量应用中的性能。
目的是研究是否可以使用能量收集方法为 MCU 供电。MCU 及其传感器需要的最大功率输出高达 200 mW(5 V)。由于变压器周围有许多高电流传输线,因此主要关注点是电磁感应。探索的其他类型的能量收集 (EH) 包括热能和振动。最初的目标是研究是否有可能将 EH 安装在变压器侧面。这可以使用磁感应、热能或振动来收集能量。如果这不可能,则更具侵入性的设计是将 EH 放在变压器箱顶部,靠近 400V 高电流线的输出。在这里,可以探索使用围绕传输线的电流变压器等选项。
摘要:量子态层析成像 (QST) 是实验量子信息处理几乎所有方面的关键要素。作为量子环境中“成像”技术的类似物,QST 天生就是一个数据科学问题,机器学习技术(尤其是神经网络)已得到广泛应用。我们构建并演示了用于光子偏振量子比特 QST 的光学神经网络 (ONN)。ONN 配备了基于电磁感应透明性的内置光学非线性激活函数。实验结果表明,我们的 ONN 可以准确确定量子比特状态的相位参数。由于光学对于量子互连非常有需求,我们的 ONN-QST 可能有助于实现光量子网络,并启发将人工智能与量子信息研究相结合的想法。
CP2101是一种高效的单芯片,高级,灵活,符合QI的无线电源接收器,其目标是10W。它具有很高的集成,低功耗。CP2101接收器使用近场电磁感应原理的功率,功率传输是通过在发射器线圈(主要)和接收器线圈(次级)之间耦合的,从次级到主的全局反馈以使用QI V1.2.2.4协议来控制电源传递过程。CP2101集成了低电阻同步整流器(AC至DC),低丢弃调节器(LDO),准确的电压和电流循环,以提高高效率并降低功率耗散。CP2101还将MCU集成为控制器,该控制器符合QI标准,它可以计算移动设备接收到的功率量,然后控制器将此信息传达给发射器,以允许发射器确定是否存在磁性界面中的异物
今年,我们系迎来了 10 位新的终身教职人员,这是过去一年中经过多次激烈竞争后的成功结果。这一成就充分反映了威斯康星大学 ECE 的优势以及我们在指导初级教师方面享有的良好声誉。随着他们的到来,我们系历史上首次拥有超过 50 名终身教职人员。这种增长的意义不仅仅在于数字。我们最新的教师拓宽并加强了我们在电力电子、电力系统优化和控制、机器学习和计算机视觉、计算系统和架构、机器人技术和自主系统控制、电磁感应以及无线通信和网络方面的专业知识。我们教师的性别多样性也是值得骄傲的一点:截至 2023 年 8 月,女性占我们终身教职人员的 28%。
摘要:充电效率是影响电子设备可用性的关键指标。通过无线充电技术提高电子智能设备的充电效率是当代面临的重大挑战。本文仔细研究了电磁感应、磁共振和无线电波无线充电技术的当前优缺点。此外,它还仔细研究了无线充电技术的未来发展轨迹和前景,从当前的市场格局中汲取了见解。尽管无线充电技术面临持续的挑战,但不断的科学技术进步有望提高效率和安全性。无线充电基础设施和相关设备的预期改进将进一步加强无线充电技术的采用和有效性。科学技术领域的不断发展和创新有望催化进步,为未来无线充电技术提高效率和安全标准铺平道路,从而提升整体用户体验。
罗盘传感器通过检测地球磁场来确定车辆的方向。一个励磁线圈和两个垂直的传感线圈缠绕在环形磁芯磁铁的中心。当交流电压施加到励磁线圈时,磁中心的磁通量会发生变化,并通过传感线圈中的电磁感应产生电压。当没有外部磁场时,磁通量变化会产生对称波形。当外部磁场 H 以直角施加到输出线圈 Vx 时,它会叠加在磁化电流产生的磁场上,磁通量会发生变化变得不对称(见图 7)。输出电压与差值的变化率成比例。当外部磁场 H 以一定角度 φ 施加时,可以感测输出电压 Vx 和 Vy,并使用如下所示的关系计算车辆方向:
摘要:作为量子信息处理和量子通信的重要元素,基于固态平台的高效量子存储器对于实际应用至关重要,但仍是一个挑战。本文提出了一种基于具有Rashba自旋轨道耦合(SOC)的量子点(QDs)实现单光子高效可控存储和路由的方案。我们表明QDs中的SOC可以为单光子传播提供灵活的电磁感应透明(EIT)结构,并且可以通过EIT实现单光子波包的存储、检索和路由。此外,我们证明了QDs中单光子波包的传播损耗可以通过弱微波场大大抑制,从而可以实现单光子的高效和高保真存储和路由。我们的研究为基于具有SOC的QDs的光子量子信息处理和传输的先进固态器件的设计开辟了一条新途径。