摘要 —电磁波吸波材料(EWAM)在隐身飞机制造中起着至关重要的作用,隐身飞机可通过降低反射回雷达系统的信号强度来实现电磁隐身(ES)。然而,隐身性能受到涂层厚度、入射波角度和工作频率的限制。为了解决这些限制,我们提出了一种新的智能反射面(IRS)辅助 ES 系统,其中 IRS 部署在目标上以与 EWAM 协同作用,有效减轻回波信号,从而降低雷达检测概率。考虑到检测概率和雷达接收的信噪比(SNR)之间的单调关系,我们制定了一个在每个 IRS 元件的反射约束下最小化 SNR 的优化问题,并利用 Karush-Kuhn-Tucker(KKT)条件推导出半闭式解。仿真结果验证了所提出的 IRS 辅助 ES 系统与各种基准相比的优越性。
1.“无人驾驶飞机”(“UAV”)是指在飞机内部或飞机上无法直接进行人为干预的情况下运行的无人驾驶飞机。此定义不包括用于娱乐或体育目的的遥控模型飞机。 2.“无人驾驶飞机系统”(“UAS”)是指无人驾驶飞机及其相关元件(包括通信链路和控制 UAV 的组件),这些元件是机长在国家空域系统中安全高效运行所必需的。 3.“图像”是指热、红外、紫外、可见光或其他电磁波;声波;气味;或其他物理现象的记录,用于捕捉不动产或位于该不动产上的个人的状况。 4.“成像设备”是指机械、数字或电子观看设备;静物相机;摄像机;电影摄影机;或任何其他能够记录、存储或传输图像的仪器、设备或格式。禁止使用:
可以与国防工业中其他国家使用的设备相媲美的技术的发展,更重要的是,可以禁用其设备变得越来越重要。雷达吸收材料(RAM)由于吸收了雷达发送的电磁波的一部分,因此难以检测雷达上的材料。考虑到雷达是国防工业中最重要的技术之一,因此非雷达材料的生产对于世界上所有国家至关重要。用雷达吸收器材料覆盖枪支平台可降低代表该平台在雷达上的可见性的雷达 - 横截面区域(RCA)值。本综述旨在提出电磁原理,并在1960年代数十年中开发出雷达吸收材料(RAM)。电磁频谱中8-12 GHz的频率范围为微波炉,并用于机场雷达应用中。在本文中描述了电磁理论的修订基础,并由多种吸收性材料和某些设计层化的类型和技术定义。
纳米尺度上的光与物质的相互作用是许多物理问题的核心,包括用于表征锂离子电池 (LIB) 的光谱技术。对于物理学家和化学家来说,时间相关量子力学中最重要的课题之一是光谱学的描述,它指的是通过物质与光场的相互作用来研究物质。从经典的角度来看,光与物质的相互作用是振荡电磁场与带电粒子共振相互作用的结果。从量子力学的角度来看,光场将起到耦合物质量子态的作用。光与物质的相互作用从根本上讲是量子电动力学的。在许多情况下,它们被描述为电子的量子跃迁,伴随着光量子的发射、吸收或散射 [1]。在过去的几十年里,一些实验已经研究了电磁波与 LIB 中使用的各种材料的相互作用,以造福社会 [2-4]。目前,电池界的研究
太空是任何材料技术的终极试验台环境。太空条件恶劣,温度变化剧烈,缺乏重力和大气,太阳和宇宙辐射强烈,发射和部署时产生机械应力,这些都代表着一系列多方面的挑战。我们设计的材料不仅要应对这些挑战,而且还要将总质量保持在最低水平,并保证长时间内的性能,且无需维修。纳米光子材料(即结构变化与光波长相当的材料)为解决其中一些困难提供了机会。在这里,我们研究了纳米光子学和纳米制造技术的进步如何使超薄轻质结构具有无与伦比的能力,能够在宽电磁波谱上塑造光与物质的相互作用。从可以在太空制造的太阳能电池板到光的推进应用,下一代轻质多功能光子材料将影响现有技术,并为新的太空技术铺平道路。
模块代码 模块标题 EC 1 2 3 4 AP3061 声学、弹性波和电磁波 6 AP3091 基本粒子 6 AP3113 量子光学 6 AP3122 高级光学成像 6 AP3132 高级数字图像处理 6 AP3152 光刻光学 6 AP3222 纳米技术 6 AP3242 激光器和光电探测器 3 AP3252 纳米级电子显微镜表征 3 AP3311 用于研究结构和动力学的中子、X 射线和正电子 6 AP3352 核科学与工程概论 6 AP3382 高级光子学 6 AP3391 几何光学 6 AP3401 带电粒子光学简介 6 AP3531 声学成像 6 AP3412 光学实验技术 3 AP3701 亚毫米波和太赫兹物理与应用 3 AE4896 空间仪器 4 EE4745 太赫兹超导天文仪器 5 ME46310 光机电一体化 4 SC42030 高分辨率成像控制 3 SC42065 自适应光学设计项目 3
光子系统之间的电磁波耦合依赖于通常限制在单个波长内的evanevanscent场。扩展evanscent耦合距离需要低折射率对比度和完美的动量匹配,以实现较大的耦合比。在这里,我们报告了在拓扑山谷大厅对波导中发现光子超耦合的发现,显示了多个波长的耦合效率的显着提高。在实验上,我们通过电磁能的涡流涡流流进行了波导之间的超高耦合比,达到了95%的耦合效率,以分离多达三个波长。拓扑系统中光子超耦合的演示显着扩大了片上波导和组件之间的耦合距离,为开发超耦合光子光子积分设备的发展铺平了路径,光学传感和电信。
在此应用说明中,我们将讨论折射元素阵列的制造,以生成带有光角动量(OAM)的电磁波。此光学功能先前以各种方式实现,包括一对精确排列的圆柱晶状体,螺旋相板(SPP),静态或动态DOE(其中动态版本是通过液体晶体空间光调节器获得的,或者最近通过metasurfaces获得的。然而,通常将其他元素插入下游的光学路径中,以抵消带有OAM模式的光束的自然差异或在需要进行聚焦的应用中利用其特性,例如将OAM在光纤中进行耦合,以在电信中或在电信中进行波动或浮动浮动的浮动浮动型浮动或浮动浮动的浮动。
1.“无人驾驶飞机”(“UAV”)是指在飞机内部或飞机上无法直接进行人为干预的情况下操作的无人驾驶飞机。此定义不包括用于娱乐或体育目的的遥控模型飞机。2.“无人驾驶飞机系统”(“UAS”)是指无人驾驶飞机及其相关元件(包括通信链路和控制 UAV 的组件),这些元件是机长在国家空域系统中安全高效地操作所必需的。3.“图像”是指热波、红外波、紫外波、可见光或其他电磁波;声波;气味;或其他物理现象的记录,用于捕捉不动产或位于该不动产上的个人的现有状况。4.“成像设备”是指机械、数字或电子观看设备;照相机;摄像机;电影摄影机;或任何其他能够记录、存储或传输图像的仪器、设备或格式。禁止使用:
●对于电磁波●红移 - 当光从观察者移开时,明显的频率会降低,增加波长,从而将光转向频谱的可见光部分红色。●蓝移 - 当光向观察者移动时,表观频率会增加,减小波长,从而将光向蓝色移动。● When a source of light and an observer are moving relative to each other, the observed wavelength of light differs from the actual wavelength of light ● When a light wave is emitted by a source fixed in the moving inertial frame S', the observer in S sees the wavelength measured in S' to be shorter by a factor of sqrt(1 - v 2 / c 2 ) ● Because the observer sees the source moving away within s,在S中到达观察者的波模式也由因子1 + V / c伸展。●组合效应由:< / div>给出:< / div>