摘要:与高分辨率质谱耦合的液态色谱分析(NTA)提高了与靶向分析技术相比,可以提高理解复杂混合物的分子组成的能力。但是,对未知化合物的检测意味着NTA中的定量是具有挑战性的。本研究提出了一种新的半定量方法,用于有机气溶胶的NTA。使用多个定量标准的平均电离效率来实现未知数,这些标准在与未知分析物相同的保留时间窗口内洗脱。总共110个真实标准构建了25个保留时间窗口,用于定量氧化(CHO)和有机肌(Chon)物种。该方法在生物质燃烧有机气溶胶(BBOA)的提取物上进行了验证,并与具有真实标准的定量进行了比较,并且平均预测误差为1.52倍。此外,从真实的标准定量中估计了70%的浓度(预测误差在0.5到2倍)。与预测性电离效率方法相比,半定量方法还显示出良好的CHO化合物定量一致性,而对于Chon物种,半定量方法的预测误差(1.63)显着低于预测性电离效率方法(14.94)。将CHO和CHON物种相对丰度的衍生衍生而应用于BBOA表明,与半定量方法相比,使用峰面积低估了CHO的相对丰度,并将Chon的相对丰度高于Chon的相对丰度。这些差异可能会导致对复杂样本中源分配的严重误解,从而强调需要解决NTA方法中的电离差异。■简介
载流子的迁移率受散射机制影响。散射机制有两种类型——声子和杂质 [A] 电子在固体中的完美周期势中自由移动,不受干扰。• 但热振动会破坏势函数,导致电子或空穴与振动晶格原子之间的相互作用。• 这会影响载流子的速度和迁移率,这称为声子散射。[B] 在半导体中添加杂质原子以控制或改变其特性。• 这些杂质在室温下被电离,因此电子或空穴与电离杂质之间存在库仑相互作用。• 这种库仑相互作用产生散射或碰撞,也会改变电荷载流子的速度:- 杂质散射。
一个典型的电离室由两个电荷板和一个放射源(通常为Americium 241)组成,用于电离板之间的空气。(见图1)放射性源散发出与空气分子一起散发并移出电子的颗粒。由于分子损失电子,它们会变成正带的离子。随着其他分子获得电子的产生,它们变成负电荷的离子。创建了相等数量的正离子和负离子。带正电的离子被带负电荷的电板吸引,而带负电荷的离子被带带正电荷的板吸引。(见图2.)这会产生一个小电离电流,可以通过连接到板的电路(检测器中的“正常”条件)来测量。
分子发现的复杂性需要有效地播放庞大而未知的化学空间的自主系统。虽然将人工智能(AI)与16个机器人自动化相结合已加速发现,但其应用程序仍在稀有历史数据的领域17中受到限制。一个这样的挑战是脂质纳米颗粒(LNP)的设计,用于18个mRNA传递,它依赖于专家驱动的设计,并受到有限数据集的阻碍。19在这里,我们介绍了一种自动驾驶实验室(SDL)系统Lumi-LAB,该系统通过将分子基础模型与自动化的21个主动学习实验工作流相结合,从而可以使用最小的湿LAB数据进行有效的学习20。通过十个迭代循环,Lumi-LAB合成22,并评估了1,700多种LNP,与临床认可的基准相比,人支气管细胞中具有优质mRNA转染的可离子脂质23人支气管细胞的效力。出乎意料的是,24个自主透露的溴化脂质尾巴是一种新型功能,从而增强了mRNA递送。25体内验证进一步证实,含有表现最佳的26个脂质Lumi-6的LNP在鼠模型中的肺上皮细胞中的基因编辑功效达到20.3%,27个在我们的知识中,在鼠类模型中27次超过了吸入的LNP介导的CRISPR-Cas9递送28的LNP LNP介导的CRISPR-CAS9递送的效率最高。这些发现证明了Lumi-LAB是一个强大的,数据效率的29平台,用于推进mRNA传递,强调了AI驱动的自主30系统在材料科学和治疗发现中加速创新的潜力。31
摘要:金属蛋白锌无处不在,具有结构和功能重要性的蛋白质锌中心,涉及与配体和底物的相互作用,并且通常具有药理意义。生物分子模拟在研究蛋白质结构,动力学,配体相互作用和催化的研究中越来越突出,但是锌构成了一个特殊的挑战,部分原因是它具有多功能,灵活的协调。生成生物锌中心配体配合物的可靠模型的计算工作流程将发现广泛的应用。在这里,我们使用(非键)分子力学(MM)和量子力学/分子力学(QM/ mm)在半词性(DFTB3)(DFTB3)和理论的密度功能理论(DFTB3)和理论水平来描述六二键式岩构成六氧化锌的锌层中心的理论水平,以评估替代处理的能力。 (单核和二核),以及相互作用组的性质(特别是锌 - 硫相互作用的存在)。mM分子动力学(MD)模拟可以过度影响八面体的几何形状,将其他水分子引入锌配位壳,但可以通过随后的半经验(DFTB3)QM/MM MM MM MD MD MD模拟来纠正。b3lyp/mm几何优化进一步提高了协调距离描述的准确性,该方法的总体有效性取决于包括锌的存在 - 硫 - 硫相互作用,而硫 - 硫相互作用的描述较少。我们描述了使用DFTB3的QM/MM MD的工作流程,然后使用DFT(例如B3Lyp)进行QM/MM几何形状优化,很好地描述了我们的锌金属酶复合物集合,并且很可能适合在结构信息的准确模型中创建锌蛋白质复合物的准确模型。
摘要尽管它们具有巨大的效用和扩散,但大气压电离质谱技术仍受到称为矩阵效应(ME)的相关缺点。这些效应可以在基质依赖性信号抑制或增强中总结,这可能会导致错误的定量结果。由于矩阵中存在的干扰化合物,可以修改最重要的方法参数以及线性,精度和精度。如果不对我进行彻底评估,则不能接受验证方法,也不能解决最小化或纠正其影响的可能策略。矩阵效应是由影响目标分析物电离效率的残留矩阵组件共同阐明,并可能导致错误的结果。矩阵效果,即离子抑制或离子增强,在液相色谱 - 质谱法(LC-MS)中是众所周知的现象。它们可能是由各种起源的化合物引起的。由于矩阵效应可能对重要方法性能参数产生负面影响,因此必须在方法开发/验证期间对其进行测试和评估。这可以通过后柱输注方法或通过与分析物峰值的空白样品提取物的信号进行比较。在可能的情况下,应通过优化色谱条件来减少或消除基质效应,从而改善样品清理和/或通过更改所采用的电离类型。在本文中,我们专注于LC-MS/MS的矩阵效应的详细描述。
硅酸的电离性很差。在 pH 值为中性时,水中存在的几乎所有二氧化硅都是分子而不是离子。尽管强碱树脂能够分解盐,但分子二氧化硅无法通过离子交换途径进入离子交换珠,并且受到其扩散到珠子中的速率的限制。氯化物形式的阴离子树脂去除的入口二氧化硅不到 5%,部分原因是扩散限制,部分原因是二氧化硅在 pH 值为中性时电离不利。扩散限制也是二氧化硅选择性混合物和吸附剂去除二氧化硅缓慢且不完全的主要原因。二氧化硅到达吸附位点需要很长时间,比水通常与介质接触的时间要长得多。
人类空间探索的新阶段即将到来。从国际空间站到NASA的猎户座航天器,TimePix已成为几个人类太空飞行任务的一部分。由CERN托管Medipix2协作开发,TimePix检测器非常小但功能强大。在过去的十年中,它们已用于各种空间应用中:从开放空间中辐射和宇宙射线的可视化到宇航员的可视化。因此,他们在国际空间站上,并被委托用于NASA的月球勘探计划Artemis。芯片的技术类似于在CERN的LHC实验中用于跟踪粒子轨迹的技术。它能够测量电离α,β和伽马辐射以及重离子;它还能够表征单个电离颗粒的痕迹,以便推导类型和能量。哪些太空任务?
电离真空计被校准实验室用作二级标准,并被用作计量实验室之间比对的传递标准。对于这些应用,定量测量计相对于计校准因子的稳定性至关重要。我们报告了热丝金属外壳封闭电离计的长期校准稳定性,该报告基于对 15 年内九个计的重复校准的分析。研究中涉及的所有计均为同一类型:Bayard-Alpert 型电离计,采用全金属结构,热丝、网格和收集器周围有一体式金属外壳。所有计均在美国国家标准与技术研究所 (NIST) 使用 NIST 高真空标准反复校准,但归 NIST 以外的组织所有。校准后,计从高真空标准中取出,运回计所有者,并在稍后(超过 1 年)返回 NIST 进行重新校准。仪表稳定性是使用基于 NIST 测量的所有校准因子的合并标准偏差(单个仪表标准偏差的加权均方根平均值)确定的,并用于定义与长期稳定性 u LTS 相关的相对不确定度分量。我们确定,对于以 4 mA 发射电流运行的仪表,u LTS ¼ 1.9% (k ¼ 1),对于以 0.1 mA 发射电流运行的仪表,u LTS ¼ 2.8% (k ¼ 1)