摘要:除了将光伏电池板产生的能量储存在电池中以备日后用于为电力负载供电外,还可以生产绿色氢气并将其用于运输、供暖和作为天然气替代品。绿色氢气是在电解过程中产生的。通常,电解器可以从可再生能源等波动电源中产生氢气。然而,由于电解器的启动时间和多次关机加速的电解器退化,需要空闲模式。在空闲模式下,电解器使用额定电解器负载的 10%。应采用能源管理系统 (EMS),其中使用锂离子电容器或锂离子电池等存储技术。本文使用 PV 微电网的状态机 EMS 进行绿色氢气生产和储能,以管理早上利用太阳能和晚上利用储能中存储的能量进行氢气生产,储能的大小针对使用锂离子电容器和锂离子电池的不同场景而定。考虑到系统在澳大利亚气候下的局部辐照度和温度条件,对锂离子电容器和锂离子电池的任务概况和预期寿命进行了评估。针对不同场景,评估了存储大小和氢气生产截止点作为成本函数变量之间的权衡。针对每个测试场景比较锂离子电容器和锂离子电池的最佳寿命。研究发现,与锂离子电容器相比,锂离子电池平均大 140%,但锂离子电容器由于日历老化程度较高,运行十年后剩余容量较小,为 80.2%,而 LiB 为 86%。还注意到,LiB 受循环老化的影响更大,而 LiC 受日历老化的影响更大。然而,锂离子电容器10年后的平均内阻是初始内阻的264%,而锂离子电池10年后的平均内阻为346%,因此,如果用于电网调节,锂离子电容器是更适合的储能选择,因为它需要在储能的整个使用寿命期间保持较低的内阻。
作为澳大利亚首家新能源服务站,该站将能够以商业数量分配可再生氢,为吉朗和维多利亚州西南部各行各业的 15 辆氢动力重型车辆提供初始支持。该项目包括一个 2.5 兆瓦质子交换膜 (PEM) 电解器,该电解器能够利用再生水和可再生电力每天生产约 1,000 公斤气态氢,以及一个“快速加氢”加氢包,旨在连续为至少 10 辆卡车或公共汽车加氢。
电解器容量系数的年际变化 (IAV) 很重要,因为它代表了绿色氢气产量每年的典型变化。如果一个项目承诺每年向承购商提供最低量的氢气,则必须了解达不到这一阈值的风险。如果该项目无法从电网进口电力来为电解器供电并弥补短缺,则可能需要补偿承购商从其他供应商处采购额外氢气的费用。
电能在我们的日常生活和工业生产中起着非常重要的作用。化石燃料、核热能和可再生能源(例如太阳能、风能和生物质能)都可以转换成电能[1]。不幸的是,能量转换过程总是伴随着大量的能量损失。例如,核热能转化为电能的效率仅为约30%。此外,来自可再生能源的电能高度依赖于天气、季节和地域,无法及时满足实际需求。因此,迫切需要解决电能的存储和转换问题。开发先进的能量存储和转换技术对于提高能源利用效率和扩大能源应用领域至关重要。二次电池、超级电容器、水电解器和燃料电池是一些典型的电化学能量存储和转换装置。图1.1显示了这些电化学能量存储和转换系统的示意图[2]。水电解器可将电能转化为化学能,产生氢气(转化效率约为 70%),供燃料电池进一步使用。在相反的过程中,燃料电池将化学能转化为电能。二次电池(如锂离子电池)的能量转化过程是可逆的。在充电过程中,电能可以转化为化学能 [3]。在放电过程中,化学能又转化回电能。转化速度决定了系统功率,而存储容量与系统能量有关。一般来说,由于内部系统的原因,能量转换和存储的活性材料被集成到二次电池中。与二次电池不同,电解器和燃料电池系统适用于分离的转换器和存储。这种电化学存储和转换系统通常比集成存储和转换器的系统提供更高的能量。因此,电解器和燃料电池也引起了广泛关注 [4]。本文简要概述了典型的二次电池、超级电容器、燃料电池和水电解器。
本报告由荷兰国家科学研究组织能源与材料转型部门的能源转型研究 (ETS) 部门编写。ETS 的主要作者是 Leonard Eblé 和 Marcel Weeda。本报告受益于荷兰国家科学研究组织同事 Lennart van der Burg、Sebastiaan Hers、Carina Oliveira Machado dos Santos 和 Evie Cox 的审阅贡献。以下人员为改进报告质量提供了进一步的有用反馈:Douwe Roest(经济事务和气候政策部);Samira Farahani(NLHydrogen)、Remko Ybema(HyCC)、Daniel Leliefeld(Shell)、Timme van Melle(EBN)、Joost ten Hoonte(Uniper)、Menno van Liere(Engie)和 Eric van Herel(Air Products),他们都通过荷兰氢能协会 NLHydrogen 提供了反馈。本报告中描述的研究由经济事务和气候政策部气候司的能源转型研究计划 (OPETS) 资助,旨在为能源政策提供知识。如果没有以下各方的贡献和数据,该项目就不可能实现:液化空气集团;空气产品公司;英国石油公司;Eneco;Engie;Hygro;HyCC;Orsted;RWE;壳牌;塔塔;Uniper;Vattenfall;VoltH2。
拟议的 7.5 亿美元项目将分阶段开发,最初每天生产 20 吨绿色氢气,以绿色氨的形式出口。这座全规模工厂将通过 450 兆瓦的电解器每天生产 100 吨绿色氢气,使其能够满足出口和国内供应需求。托克集团将采购 100% 的可再生电力来运行该项目的电解器。南澳大利亚州政府正在利用就业和经济增长基金提供的 250 万美元拨款加速该项目的前端工程设计。
– 加速先进水分解技术的研究 – 利用当今的可再生能源和核能 – 通过 H2NEW 联盟在短短 5 年内实现 100 美元/千瓦电解器堆栈目标 – 包括对低温电解 [ LTE](PEM,液体碱性)和高温电解 [HTE](固体氧化物)电解器技术的研究 – 10 亿美元的 BIL 活动现在使电解方面的努力增加了一个数量级,以加速开发 • 长期:利用太阳能或热量更直接地分解水
摘要 . 本研究旨在实施一个优化模型,该模型用于连接重型车辆加油站的制氢设施,用于废物管理和运输领域。该模型由两个连续的混合整数线性规划问题组成。第一个问题解决车辆加油计划问题,第二个问题解决工厂设计和运营问题。该模型的输出是工厂的设计和运行参数以及车辆加油计划,以实现氢气的最低平准成本。研究了电力供应的不同可能性:电网电力、太阳能光伏和水力发电。最有利可图的选择是安装 10 MW 太阳能光伏场,连接 3.3 MW 电解器和 3700 kg 储存器。由此产生的氢气平准成本为 10.24 欧元/千克。如果不考虑售电收入,从电网购买电力成为最具成本效益的选择。这种情况下,电解器和储氢器的大小分别为 760 kW 和 405 kg,氢气的平准化成本为 13.75 欧元/kg。对后一种情况进行的敏感性分析表明,最合理的输入参数是电解器单位消耗和电力成本。还进行了统计分析,考虑了随机故障分布,获得了电解器容量为 700-800 kW 和氢气储氢器大小为 1300-1400 kg 的最佳值。考虑到目前的电价和没有补贴,氢气在能源市场的渗透成本仍然很高。
要克服的关键障碍之一是降低生产成本。国际能源署报告称,根据地区天然气价格,从天然气生产 1 公斤氢气的平均成本在 0.5 至 1.70 美元之间,而从可再生能源生产 1 公斤氢气的成本在 3.00 至 8.00 美元之间。17 可再生电力的成本可占总生产费用的 50-90%,而且随着电解器老化和效率下降,这一成本还会增加。绿色氢气工厂和电解器也是资本密集型的,泵送和水处理设备占初始投资的很大一部分。