简介.................... ... ................. ... ....................................................................................................................................................................................................... 4574 风力发电....................................................................................................................................................................................... ... 4575 利用可再生能源生产氢气系统 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4576 利用可再生能源供电及电解器耐久性 . ... ................. ... . . . . . . . . . . . 4578 使用基于可再生能源的电力的水电解器相关问题. . . . . . . . . . . . . 4580 使用可再生能源的碱性水电解器相关问题. . . . . . . . . . . . . . . . 4580 使用可再生能源的 PEM 水电解器相关问题. . . . . . . . . . . . . . . . . . . . . . . . . 4583 利用可再生能源的 SOEC 的动态特性 . . . . . . . . . . . . . . . . . . . . . . . . 4584 结论与展望 . . . . . . . . . . . . . . . . . . . ................. ... . . . . 4588 致谢. ... 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 4588
对局部网络特征的分析表明,理想的电解器容量为300 kW,其中最高700 kW的容量是可行的。在[13]中列出了另一个例子,其中研究了风能系统的大小优化,以最大程度地提高氢价格和风能波动的股本回报率。结果表明,氢的生产仅为4.34欧元/千克氢气价格或更高,置信度92%。换句话说,增加电解器的大小将增加氢的产量,因此氢价格达到所需的可行性。在[14]中分析了通过水电解器生产氢的风能减少。检查了两个在5兆瓦以下及6兆瓦的电溶剂能力以下的网格连接的风氢系统的情况。结果表明,在两种情况下,随着电解器尺寸的增加,风能的利用率增加。但是,回报周期也增加了,而电解器的成本超过了氢价格的增加。一般而言,电解器尺寸的增加与电力消耗和氢的产生成正比,以实施适当的负载水平,否则可能会导致成本指数升高[15]。
媒体联系人:press@gtt.fr / +33(0)1 30 23 48 45投资者关系联系人:信息 - financiere@gtt.fr / + 33(0)1 30 23 20 87关于交叉方面的交叉方面是Shell Nederland和Eneco之间的合资企业。Crosswind赢得了风电场Hollandse Kust Noord的建设和运作的招标。Crosswind正在与西门子游戏可再生能源合作,以供应风力涡轮机,并与范奥德(Van Oord)一起提供地基和电缆的供应以及在海上的风力涡轮机的安装。Crosswind与离岸电源插座,电网开发人员Tennet以及相关部门,沿海当局和其他利益相关者的开发商密切联系。请访问网站www.crosswindhkn.nl,以获取有关Crosswind,Wind Farm,创新和建筑活动的更多信息。
验证氢电解器和燃料电池的集成。• 氢系统的集成:氢设备(电解器/燃料电池组、电厂平衡、低级控制)、电力电子设备和先进的电网功能。• 电解器作为快速、可控、智能负载参与电网服务;燃料电池作为能够形成电网的发电资源。集成氢系统,与其他发电和存储资产进行混合。• 参与电网服务的电网规范和标准。
计算中使用的假设:电力成本:55 美元/兆瓦时;电解器系统安装资本支出:600 美元/千瓦;海上风电安装成本:2858 美元/千瓦;太阳能安装成本:857 美元/千瓦;风能:太阳能比例:67:33;可再生能源容量系数:53%;电解器容量系数:90%;参考文献:2021 年可再生能源发电成本 (irena.org);绿色氢成本降低:扩大电解器规模以实现 1.5C 气候目标 (irena.org)
1MW PEM电解器质子交换膜电解器包含四个具有负和正电极的细胞堆栈。当电流通过水时,氢质子越过膜在阴极处形成氢,而在阳极形成阳性的氧气离子。
图 1. 碱性电解池方案 [8]。................................................................ 4 图 2. 碱性电解器工厂平衡 [8]。.............................................................. 5 图 3. PEM 电解池方案 [8]。.............................................................. 6 图 4. PEM 电解器工厂平衡 [8]。...................................................... 7 图 5. 固体氧化物电解池方案 [8]。...................................................... 8 图 6. 系统结构和组件示意图。...................................................... 14 图 7. PEM 和碱性电解器的效率曲线 [13]。............................................. 18 图 8. 每小时电解器工作条件的迭代过程方案。............................................. 19 图 9. 天然气消耗小时曲线。............................................................. 25 图 10. 光伏生产小时曲线。............................................................. 26 图 11. 光伏与电解器一天内能量曲线比较。 ........................................................................................................................... 27 图 12. 参考情景中的电解槽运行小时数。 ...................................................................................... 30 图 13. 平均负荷因数和标准差(红线)。 ...................................................................................... 31 图 14. 平均特定消耗和标准差(红线)。 .. 32 图 15. 通过改变设计负荷因数计算的平均运行负荷因数。 ............................................................. 33 图 16. 通过改变设计负荷因数计算的平均特定消耗。 ............................................................. 34 图 17. 电解槽尺寸与混合的关系。 ............................................................................. 35 图 18. 光伏电站规模与混合的关系。 ............................................................................. 36 图 19. 可变混合下的天然气节省量和电力消耗量。 ............................................................................................................. 37 图 20. 每次混合时 PEM 电解槽的行为。 ............................................................................. 38 图 21. 分析情景中的 NPV 趋势。 ................................................ 40 图 22. 主要情景下的投资细分。 ...................................................... 41 图 23. 主要情景下 LCOH 细分。 ...................................................... 42 图 24. 主要情景下的收入细分结构。 ...................................................... 43 图 25. 不同 PV-ALK 电解器比率的 NPV 趋势。 ...................................................... 44 图 26. 不同 PV-PEM 电解器比率的 NPV 趋势。 ...................................................... 44
• 可直接与风力涡轮机、太阳能光伏、锂电池、负载组、可控电网接口、公用电网或虚拟仿真环境(数字实时模拟和网络范围)的任意组合进行交流耦合 • 混合电网控制器控制校园内的所有电力资产,包括电解器和燃料电池发电机的闭环电源点控制,并可根据项目进行定制 • 1.25 MW PEM 电解器和 1 MW PEM 燃料电池发电机 • 电解器功率增益(上升)速率为 ~6%/秒,斜率(下降)速率为 ~15%/秒 • 燃料电池可以跟踪电网以及黑启动/电网形式(接近瞬时 100% 功率响应) • 燃料电池调低至 0%,电解器调低至 20%(包括工厂平衡) • 1 Hz 标准数据采集和控制速率,交流电网可以进行 50 kHz 数据采集
– 将研发测量和目标与性能和经济影响联系起来 – 提供操作条件和周期以供考虑和测试 – 强调操作要求和可制造性 • 评估成本、性能和耐用性权衡,以确定最佳 LTE 部署,以实现可再生能源整合场景中 2 美元/千克和 1 美元/千克的生产成本 • 涉及多种功能的优化