摘要 (英文) ................................................................................................................................................................ 1 摘要 (法文) ................................................................................................................................................................ 3 概述 ........................................................................................................................................................................ 5 第 1 章:参考书目 ...................................................................................................................................... 9 1.1. 可再生能源和储能资源的重要性 ...................................................................................................... 11 1.2 为什么选择液流电池 ............................................................................................................................. 18 1.2.1 铁铬液流电池 ............................................................................................................................. 20 1.2.2 溴/多硫化物液流电池 ............................................................................................................. 20 1.2.3 钒/溴 2 液流电池 ............................................................................................................. 21 1.2.4 锌/溴液流电池(混合液流电池) ............................................................................................. 21 1.2.5 锌/铈非水系液流电池(非水系) ................................................ 22 1.2.6 钒/铈氧化还原液流电池。(非水系) ...................................................................... 22 1.3. 为什么所有钒氧化还原液流 ...................................................................................................................... 23 1.4 与钒电解液相关的挑战 ...................................................................................................................... 24 1.4.1 膜 .................................................................................................................................................... 25 1.4.2 电解质 .................................................................................................................................................... 26 1.4.3 电极 .................................................................................................................................................... 27 1.4.3.1 热处理 ............................................................................................................................................. 29 1.4.3.2 化学处理 ............................................................................................................................................. 31 1.4.3.3 金属掺杂 ............................................................................................................................................... 33 1.4.3.4 电化学处理 ...................................................................................................................... 36 1.5 结论 .............................................................................................................................................. 38 第 2 章 通过使用 K 2 Cr 2 O 7 酸性溶液进行化学处理来增强全钒氧化还原液流电池(VRFB)用商业石墨毡的电化学活性 . ............................................................................................................................. 41 2.1 简介 ...................................................................................................................................................... 44 2.2.实验................................................................................................................................................................ 45 2.2.1 材料与化学品 ...................................................................................................................................... 45 2.2.2 电极活化 .............................................................................................................................................. 46 2.2.3 电极特性 ............................................................................................................................................. 46 2.2.4 半电池评估 ............................................................................................................................................. 48 2.3 结果与讨论 ............................................................................................................................................. 49 2.3.1 循环伏安法 (CV) 和处理参数优化 ............................................................................................. 49 2.3.1.1 用 K 2 Cr 2 O 7 溶液活化时温度的影响 ............................................................................. 51 2.3.1.2 用 K 2 Cr 2 O 7 溶液活化时时间的影响 ............................................................................. 52 2.3.1.3 在 140 o C 温度下持续时间的影响 ............................................................................................. 53 2.3.1.4 性能最佳的电极 ................................................................................................................ 54 2.3.2 线性扫描伏安法(LSV) .............................................................................................................. 56 2.3.3 表面特性 ............................................................................................................................. 58 2.3.3.1 扫描电子显微镜(SEM) ............................................................................................. 58 2.3.3.2 傅里叶变换红外光谱(FTIR) ............................................................................. 60 2.3.3.3 线性扫描伏安法(LSV)的表面分析 ............................................................................. 61 2.3.4 吸附位点的测定 ............................................................................................................................................................... 62 2.3.5 润湿性测试 ................................................................................................................................ 65 2.3.6 半电池评估 ................................................................................................................................ 68 2.4. 结论 ................................................................................................................................................ 73
cu 2 o光(光电极)可以产生很高的太阳能到水(STH)效率(≈18%),[6-8],但它也容易在水溶液中的光接种,显示出非常稳定的稳定性。[9,10]这是因为Cu 2 O的氧化还原电位位于Cu 2 O的带隙内,从而使其可将其减少到Cu或氧化为CUO中,这极大地限制了Cu 2 O光电座在光电子体(PoperelectRocata-Lytic(Pec)(PEC)场中的应用。[11–15]因此,已经大量研究用于改善催化过程中Cu 2 O光阴极的稳定性。例如,可以通过原子层沉积(ALD)技术在其表面上添加缓冲层(ZnO,Ca 2 O 3)和在其表面上的protective层(tiO 2 O 3),可以通过原子层(ALD)技术在电解质溶液中的光(TiO 2 O 3)和弹性层(tio 2)进行有效缓解。[16,17]但是,由于液体过程和昂贵的设备,此方法不适合大规模生产。因此,通过结合G -C 3 N 4,[18-20] NIS,[21] FeOOH,[22,23] Cu 2 S,[24-26]和MOFS [24-26]和MOFS [27,28],通过多样化的方法(例如,替代涂料,替代涂料)组合来形成连接,还可以提高复合Cu 2 O 2 O光阴极的稳定性。为了进一步提高Cu 2 O光电的光稳定性,需要通过可重复的过程和技术开发一些更有效的保护层材料。据报道,切断光电剥离和电解质溶液之间的反应可以有效抵抗其光腐蚀。此外,明显提高了Cu 2 O[29–31]铜苯乙酰基(pHCCCA)是一种新报道的金属有机聚合物半导体,具有出色的照片/热稳定性,可见光的光反应和高电子孔孔对分离效率。[32–36]最重要的是,它还显示出强的疏水性,静态水接触角为131.2°。[37]通过报道的光热方法,[16]高质量的pH c c c c cu Cu保护层被成功地自组装在Cu 2 O 2 O光(图1)的表面上(图1),有效地抑制了其光腐蚀,通过与电解液和O 2中的O 2分开其光腐蚀。在长期PEC实验后,通过构造的pH phcc cu/cu/cu 2 o光电座获得的稳定光电流密度显示出其出色的光稳定性,这也由稳定的晶体结构,形态和cu的价位证明。
ab5-金属合金(例如LANI5)能够分别充电和放电,能够分别充电和放电,能够进行可逆的氢气吸收/解吸反应。这是镍金属氢化物电池中最受欢迎的电极。吸收 - 通过化学或分子作用占用另一种材料或保留一种材料。累加器 - 可充电电池或电池(另请参见辅助电池)。酸电池 - 用作电解质的电池,例如,铅酸电池,其中硫酸为电解质。主动材料 - 电极材料,在电荷实际容量中存储的化学能在排放过程中产生电能 - 通常以安培小时或毫安小时表示的总电池容量可用于执行工作。特定电池的实际容量取决于许多因素,包括截止电压,排放率,温度,充电方法以及电池的年龄和寿命。agm(吸收玻璃垫) - 一种非编织的分离材料几乎完全由玻璃微纤维组成,这些玻璃微纤维吸收和保留电解质,在电池中没有免费的电解质来溢出。用这种材料制造的 VRLA电池通常称为“ AGM”电池。 碱性 - 经常用于长时间需要重电流的电子应用中的主电池(不可用)(即 :CD播放器,收音机等)。 碱性电池可以比相同尺寸的传统碳/锌电池提供50-100%的总能量,因此它们在消费者应用中的受欢迎程度。VRLA电池通常称为“ AGM”电池。碱性 - 经常用于长时间需要重电流的电子应用中的主电池(不可用)(即:CD播放器,收音机等)。碱性电池可以比相同尺寸的传统碳/锌电池提供50-100%的总能量,因此它们在消费者应用中的受欢迎程度。碱性储物电池 - 电池使用碱性水溶液的电解液。设计的镍 - 加德米电池。合金 - 其他几种金属或金属和非金属的混合物。交流发电机 - 汽车中用于产生电流的一种发电机。环境湿度 - 周围环境的平均湿度。环境温度 - 周围环境的平均温度。安培(AMP,A) - 通过电路的电子流速或电流的度量单位。安培小时(AMP-HRS,AH) - 电池电气存储容量的测量单位,通过将安培中的电流乘以排放的时间来获得。(示例:提供5安培的电池20小时可提供5安培x 20小时= 100安培的容量。)安培小时的容量 - 可以在一次放电时通过电池输送的安培小时数量。阳极 - 放电期间,电池的负电极为阳极。在充电过程中,逆转和电池的正电极是阳极。阳极将电子放在负载电路上并溶解到电解质中。水电池 - 带有水基电解质的电池。电解质可能不会是液体的,因为它可以被电池的分离器吸收。组装电池 - 由多个电池组成的任何电池。