Loading...
机构名称:
¥ 1.0

cu 2 o光(光电极)可以产生很高的太阳能到水(STH)效率(≈18%),[6-8],但它也容易在水溶液中的光接种,显示出非常稳定的稳定性。[9,10]这是因为Cu 2 O的氧化还原电位位于Cu 2 O的带隙内,从而使其可将其减少到Cu或氧化为CUO中,这极大地限制了Cu 2 O光电座在光电子体(PoperelectRocata-Lytic(Pec)(PEC)场中的应用。[11–15]因此,已经大量研究用于改善催化过程中Cu 2 O光阴极的稳定性。例如,可以通过原子层沉积(ALD)技术在其表面上添加缓冲层(ZnO,Ca 2 O 3)和在其表面上的protective层(tiO 2 O 3),可以通过原子层(ALD)技术在电解质溶液中的光(TiO 2 O 3)和弹性层(tio 2)进行有效缓解。[16,17]但是,由于液体过程和昂贵的设备,此方法不适合大规模生产。因此,通过结合G -C 3 N 4,[18-20] NIS,[21] FeOOH,[22,23] Cu 2 S,[24-26]和MOFS [24-26]和MOFS [27,28],通过多样化的方法(例如,替代涂料,替代涂料)组合来形成连接,还可以提高复合Cu 2 O 2 O光阴极的稳定性。为了进一步提高Cu 2 O光电的光稳定性,需要通过可重复的过程和技术开发一些更有效的保护层材料。据报道,切断光电剥离和电解质溶液之间的反应可以有效抵抗其光腐蚀。此外,明显提高了Cu 2 O[29–31]铜苯乙酰基(pHCCCA)是一种新报道的金属有机聚合物半导体,具有出色的照片/热稳定性,可见光的光反应和高电子孔孔对分离效率。[32–36]最重要的是,它还显示出强的疏水性,静态水接触角为131.2°。[37]通过报道的光热方法,[16]高质量的pH c c c c cu Cu保护层被成功地自组装在Cu 2 O 2 O光(图1)的表面上(图1),有效地抑制了其光腐蚀,通过与电解液和O 2中的O 2分开其光腐蚀。在长期PEC实验后,通过构造的pH phcc cu/cu/cu 2 o光电座获得的稳定光电流密度显示出其出色的光稳定性,这也由稳定的晶体结构,形态和cu的价位证明。

改进Cu2O光电座光电化学稳定性,phcccccu嫁接

改进Cu2O光电座光电化学稳定性,phcccccu嫁接PDF文件第1页

改进Cu2O光电座光电化学稳定性,phcccccu嫁接PDF文件第2页

改进Cu2O光电座光电化学稳定性,phcccccu嫁接PDF文件第3页

改进Cu2O光电座光电化学稳定性,phcccccu嫁接PDF文件第4页

改进Cu2O光电座光电化学稳定性,phcccccu嫁接PDF文件第5页