霍尼韦尔保证其制造商品在适用的保修期内没有有缺陷的材料和有缺陷的工艺。除非霍尼韦尔以书面形式同意霍尼韦尔标准产品保修,否则适用;请参阅您的订单确认或咨询您当地的销售办公室以获取特定的保修详细信息。如果在承保期间将有保证的商品返回到霍尼韦尔,霍尼韦尔将根据其选择维修或更换,而无需收取霍尼韦尔自行决定有缺陷的那些物品。上述内容是买方的唯一补救措施,代替了所有明示或暗示的所有其他担保,包括适合性和适合特定目的的保证。在任何情况下,霍尼韦尔都不应对结果,特殊或间接损害赔偿责任。
高容量可充电电池在电动汽车和智能电网等中迫切要求。[1]锂(LI)金属电池(LMB)被认为是最有希望的下一代蝙蝠之一,因为电势最低(-3.040 V与标准氢电极)和高理论特异性能力(3860 mAh g-1)。[2,3]然而,LMB面临的可能严重的安全问题比商业电池(LIBS)面临着严重的安全问题,尽管LMB的首次兴起甚至比LIB的lmbs早20年,否则严重阻碍了它们的实际应用。[4,5]因此,确定LMB中的关键放热反应并制定适当的策略来减轻热安全风险是LMB实用应用的最重要任务之一。不同的滥用条件在内,包括热滥用,电子滥用和机械滥用可以触发一系列强烈的放热反应,从而产生可怕的热量和电池的热安全风险。[6–9]因此,指出高能LMB内部的关键放热反应以减轻热安全风险非常重要。LMB的热安全风险中涉及几种放热反应:(1)固体电解质相间(SEI)在高温下强烈分解,成为不良热源之一。[10](2)Li金属在高温下对SEI进行保护,从而导致其与非水晶的连续反应和产生巨大的热量。电池的局部温度可以在几秒钟内升至100–120°C。[11,12](3)基于Ni的层状阴极材料,尤其是高镍阴极,由于它们在高温下的相变而释放氧气。氧化气与电流/还原阳极(尤其是Li-Metal阳极)之间的化学串扰,产生巨大的热量,并最终导致工作电池的热安全风险。[13–15](4)内部短路是热安全风险期间电池的另一种主要热源。[16,17]由于分离器的失败,阴极和阳极直接接触,导致巨大和不受控制的短路电流和大量的焦耳热。[18]更糟糕的是,这些不良的
由于地壳中锂的含量有限(<0.1 pg kg 1),人们非常担心电网储能和电动汽车所需的锂资源可能不足。4,5 为了超越锂离子电池,包括 Na、K、Mg 和 Ca 在内的丰富的碱金属和碱土金属元素已被视为开发下一代可充电电池的有吸引力的阳极材料。4 – 8 多价镁电池在过去二十年中受到了越来越多的研究关注。镁电池的电解质研究最为丰富,包括多种多样的 Mg – Cl 复合电解质和先进的无 Cl 镁电解质设计,以及对电解质溶液和界面化学的深入了解。7,9 然而,由于 Mg 2+ 离子的强路易斯酸性(以离子电负性表示)(47.6 eV,图 1),10
所有声明,技术信息,建议和建议仅用于信息目的,不打算,不应将其解释为任何类型或销售期限的保修。读者被告知,三菱化学高级材料不能保证此信息的准确性或完整性,并且客户有责任测试和评估在任何给定应用中或用于完成设备中使用的三菱化学高级材料产品的适用性。Acetron®,Ertacetal®,Ertalon®,Ertalyte®,Ketron®,Nylatron®,TechTron®和Tivar®是三菱化学高级材料的注册商标。由三菱化学高级材料创建的设计和内容,并受版权法保护。版权所有©2022三菱化学高级材料。保留所有权利。
用于收集生物电信号的柔软且灵活的设备的开发正在为可穿戴和可植入应用获得动力。在这些设备中,有机电化学晶体管 (OECT) 因其低工作电压和大信号放大而脱颖而出,能够转换微弱的生物信号。虽然液体电解质已证明在 OECT 中有效,但它们限制了其工作温度,并且由于潜在的泄漏而对电子封装构成挑战。相反,固体电解质具有机械灵活性、对环境因素的稳健性以及桥接刚性干电子系统和柔软湿润生物组织之间界面的能力等优势。然而,很少有系统表现出与各种最先进的有机混合离子电子导体 (OMIEC) 的通用性和兼容性。本文介绍了一种高拉伸性、柔韧性、生物相容性、自修复性的明胶基固态电解质,该电解质与 p 型和 n 型 OMIEC 通道兼容,同时保持高性能和出色的稳定性。此外,这种非挥发性电解质在高达 120°C 的温度下仍保持稳定,即使在干燥环境中也表现出高离子电导率。此外,还展示了一种基于 OECT 的互补逆变器,其归一化增益创下了 228 V − 1 的最高纪录,相应的静态功耗超低为 1 nW。这些进步为从生物电子学到节能植入物的多种应用铺平了道路。
摘要 锂离子电池以其便携性、高能量密度、可重复使用等特点在当今世界被广泛使用。在极端条件下,锂离子电池容易发生泄漏、燃烧甚至爆炸,因此提高锂离子电池的安全性成为人们关注的焦点。研究者认为使用固体电解质替代液体电解质可以解决锂电池的安全问题,而固体聚合物电解质由于价格低廉、加工性好、安全性高而受到越来越多的关注。然而,聚合物电解质在极端条件下也容易分解、燃烧。另外,由于锂金属负极表面电荷分布不均匀,会不断形成锂枝晶,锂枝晶引起的短路会造成电池热失控,因此聚合物固态电池的安全性仍然是一个挑战。本文总结了电池的热失控机理,介绍了电池滥用测试标准,并综述了近年来在高安全性聚合物电解质方面的研究以及聚合物电池锂负极问题的解决策略。最后对安全的聚合物固态锂电池的发展方向进行了展望。
基于碱性和碱性地球元素的lIthium后电池是更便宜的技术,其潜力有可能在过渡到更清洁和可持续的能源中的颠覆性变化,从而降低了对化石燃料的依赖。这项贡献涉及钠导电的无溶剂聚合物电解质对钠聚合物电池的发展和表征。通过α,ω-二羟基 - oligo(氧化乙烯)的多浓度与不饱和二甲酰基获得,其进一步的固化会导致无定形的网络电解质膜。在不同的O/Na比下使用NaClo 4和NACF 3 SO 3 SO 3,最佳的聚合物电解质达到90℃的阳离子电导率(σ +),超过1 ms cm -1,而保持机械完整性至少至少120°C. c.
找到合适的电解质是锂离子电池开发的主要挑战。固体聚合物电解质(SPE)已引起了很大的关注,作为较晚液体电解质的更安全替代品,并且该田迅速增长。SPE提供了聚合物化学的适应性和灵活性,从而使自定义材料的简单合成具有特定功能的特定应用。从经济和商业的角度来看,是一种具有良好离子电导率和改善尺寸和机械稳定性的低成本电解质,这是要克服的问题。基于聚乙烷氧化物(PEO)的材料长期以来一直占主导地位。然而,最近探索了许多创新的SPE化学和拓扑结构,扩大了该区域,以使其他离子协调单元不相关。1 - 5在这项研究中,通过AZA -Michael加法poly(β-氨基酯)S(PBAE)
摘要:铝和硫的高丰度和低成本使AL-S电池成为有吸引力的组合。但是,需要显着改善性能,并且增加硫电极的厚度和硫含量对于开发具有特定能量竞争价值的电池至关重要。这项工作报告了硫含量最高的硫电极的发展(60%wt。)迄今为止针对AL-S电池系统的报道,并对硫电极厚度对电池性能的影响进行了系统的研究。使用使用乙酰氨酰胺或尿素制成的低成本电解质时,当增加电极厚度时,电解质物种的质量缓慢被确定为硫酸盐利用率不良的主要原因,而完全粘性的离子离子液体可实现完全的硫。此外,对非常薄的电极的分析揭示了低成本电解质中降解反应的发生。总而言之,此处开发的新分析方法非常适合评估AL-S电池的新型电解质的稳定性和质量传输局限性。
©作者2024。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://创建ivecommons。org/licen ses/by/4。0/。