摘要:与传统的锂离子电池(LIBS)相比,固态电池(SSB)是有望实现高能密度和安全性提高的下一代电池的有希望的。尽管市场潜力很大,但很少有研究调查了SSB回收过程,以恢复和重用循环经济的关键原始金属。对于传统的LIB,湿法铝回收已被证明能够生产高质量的产品,而浸出是第一个单元操作。因此,必须建立对固体电解质的浸出行为的基本理解,这是具有不同lixiviants的SSB的关键组成部分。这项工作研究了矿物质酸(H 2 SO 4和HCl),有机酸,有机酸(Formic,乙酸,乙酸,草酸和柠檬酸)和水中最有希望的Al和最有前途的al和TA取代的Li 7 Li 7 Li 7 Li 7 La 3 Zr 2 O 12(LLZO)固体电解质。使用实际的LLZO生产浪费在1 m酸中以1:20 s/L的比率在25℃下24小时进行。结果表明,诸如H 2 SO 4之类的强酸几乎完全溶解了LLZO。用草酸和水观察到鼓励选择性浸出特性。对LLZO浸出行为的这种基本知识将为未来的优化研究提供基础,以开发创新的水透明质量SSB回收过程。
Kerstin Neuhaus a André Gröschel b,c,d 和 Nella M. Vargas-Barbosa a,d * a Forschungszentrum Jülich GmbH, IEK-12: Helmholtz Institute Münster, Corrensstrasse 46,
摘要:锂硫电池(LSB)是最有希望的下一代电池技术之一。第一个原型细胞比常规锂离子电池(LIB)显示出更高的特异能量,并且活性材料具有成本效益且普遍丰富。然而,Li-S电池仍然遭受了几个局限性,主要是周期寿命,细胞的频率以及缺乏组件生产价值链。由于该电池系统基于复杂的转换机制,因此电解质起着关键作用,不仅是针对特定能量的,而且还起着速率能力,循环稳定性和成本。在此,我们报告了基于乙二醇 - 乙酰溶剂的电解质,四甲氧基糖(TEG)和四甲氧基糖糖(TMG)。这些溶剂之前已经检查了超级电容器和Libs,但从未对LSB进行研究,尽管它们表现出了一些有益的特性,并且由于它们是几种化学物质的前体,因此已经建立了生产价值链。通过在TXG:DOL溶剂混合物中调节溶剂比和LITFSI浓度来建立一个专门适应的电解质组成。所获得的电解质显示出长的循环寿命以及较高的库仑效率,而无需使用Lino 3,这是一种正常导致细胞通信和安全问题的组件。此外,还进行了多层Li-S袋细胞中的成功评估。电解质得到了彻底的表征,并讨论了其硫转化机制。
电解质溶剂蒸汽检测解决方案是根据 BESS 的特定特性设计的,包括几何形状、体积、电池类型、空间布局和气流模式。即使单个电池开始排出电解质蒸汽,分布式气体传感器网络也会立即检测到。通过这种方式,BESS 操作员可以最早收到故障指示,并可以进行干预以防止热失控。由于检测器的监视器通过火灾报警控制面板连接到 BMS,它可以自动指示系统立即隔离受影响的电池架,从而遏制火灾威胁。监视器还可以与 BMS 通信,以自动启动通风、增加冷却或触发灭火。由于 BESS 站点通常无人值守且位于偏远地区,这种自动响应可以为 BESS 操作员争取关键的干预时间。
锂氧(Li-O 2)电池被认为是下一代储能系统的预期继任者。但是,通常使用的有机盐电解质的全面特性仍然不令人满意,更不用说它们的昂贵价格,这严重阻碍了Li-O 2电池的实际生产和应用。在此,我们提出了一个低成本的全有机硝酸盐电解质(lino 3-kno 3-dmso),用于Li-O 2电池。与有机盐电解质相比,无机硝酸盐电解质具有更高的离子电导率和更宽的电化学稳定窗口。K +的存在可以稳定O 2-中间体,从而通过溶液途径扩大能力来促进放电过程。即使在0.01 m的超低浓度下,K +仍然可以保持稳定以促进溶液放电过程,并且还具有通过静电屏蔽抑制树突生长的新功能,从而进一步增强了电池稳定性并有助于长周期寿命。结果,在0.99 m的Lino 3 - 0.01 m KNO 3 -DMSO电解质中,Li-O 2电池表现出延长的循环性能(108个循环)和出色的速率性能(2 A·G-1),比有机盐的含量明显优于有机盐。
演员和喜剧演员Rodney Dangerfi Eld(1921–2004)以其签名线而闻名:“我没有尊重。”如果睡眠是为了在深夜电视上提供独白,那么同样的线路将是apropos。从我与患者的交谈中或晚餐时与朋友的对话中,似乎几乎没有人对他们的睡眠质量感到满意。根据来自国家健康和营养检查调查的数据,Nie等人估计睡眠困难的参与者的患病率在2018年约为30%。我在风湿病诊所中看到的患者百分比用于评估广义疼痛,“脑雾”和无法解释的疲劳的百分比。有些人已经检测到但无关的,循环的抗核抗体。几乎所有人都将他们的睡眠描述为次优。但是,许多患者和临床医生似乎都有抵抗力接受其不适与疼痛与睡眠障碍之间的显着联系。从临床医生的角度来看(一旦恶性肿瘤和弹药,传染性和代谢障碍被合理地认为是不可能的),这种管理挑战就会使我们没有统一有效的疗法来纠正功能障碍的睡眠。正如本期刊所讨论的那样,这一挑战在老年人中尤其令人烦恼。但是有成功的方法。睡眠是一种引人入胜的生物学现象。大脑的不同解剖区域之间存在一个复杂的相互作用,可以调节清醒和睡眠需求。在这些不同领域的神经导体鉴定导致靶向药物疗法的发展。 在所有物种中似乎都必须以某种形式的睡眠,尽管动物之间的生理和环境生存支出可能会不同。 一些鲨鱼,鸟类,海豚,海豹和海牛表现出无与伦比的睡眠,在功能上可以用1眼张开。 这允许这些鲨鱼继续移动和充氧,并允许鸟类和其他动物获得许多受益的睡眠,同时保持对掠食者的警惕。 3蠕虫需要一种睡眠版本,以使神经塑性能够达到良好的良好性,从而使新的嗅觉学习行为,4和细胞生物钟对照的休息和活性周期(类似于动物睡眠和活动),甚至在细胞组织培养物5和Amoebae中也证明了。 在人类和其他哺乳动物中,已经证明睡眠数量(在某些情况下,在某些情况下)会影响记忆和学习,情绪,食欲和疼痛。 这些生物学效应中的许多人对正在经历或回忆起医学或外科住院医师经历的人都是如此。 在通话中睡眠夜晚后,人们渴望享用大型早餐,这可以解释为饱腹感与食欲刺激的荷尔蒙瘦素和生长素之间的不平衡。 6急性和可逆的注意力丧失和记忆力减少已被急性睡眠剥夺证明,6虽然睡眠持续时间较长的持续时间与神经退行性效应有关,甚至可能包括包括β淀粉样蛋白的沉积。在这些不同领域的神经导体鉴定导致靶向药物疗法的发展。在所有物种中似乎都必须以某种形式的睡眠,尽管动物之间的生理和环境生存支出可能会不同。一些鲨鱼,鸟类,海豚,海豹和海牛表现出无与伦比的睡眠,在功能上可以用1眼张开。这允许这些鲨鱼继续移动和充氧,并允许鸟类和其他动物获得许多受益的睡眠,同时保持对掠食者的警惕。3蠕虫需要一种睡眠版本,以使神经塑性能够达到良好的良好性,从而使新的嗅觉学习行为,4和细胞生物钟对照的休息和活性周期(类似于动物睡眠和活动),甚至在细胞组织培养物5和Amoebae中也证明了。在人类和其他哺乳动物中,已经证明睡眠数量(在某些情况下,在某些情况下)会影响记忆和学习,情绪,食欲和疼痛。这些生物学效应中的许多人对正在经历或回忆起医学或外科住院医师经历的人都是如此。在通话中睡眠夜晚后,人们渴望享用大型早餐,这可以解释为饱腹感与食欲刺激的荷尔蒙瘦素和生长素之间的不平衡。6急性和可逆的注意力丧失和记忆力减少已被急性睡眠剥夺证明,6虽然睡眠持续时间较长的持续时间与神经退行性效应有关,甚至可能包括包括β淀粉样蛋白的沉积。7功能磁共振成像可以证明与睡眠剥夺相关的可逆代谢功能障碍的解剖区域,但是完全的神经化学理解是难以捉摸的。一组有趣的观察结果表明,对于正常和有效的脑脊液fl uid fl OW是必需的,以清除大脑中间隙空间的废物分子。8直观的观察以及对上述和一些其他睡眠研究的审查,在识别未获得认知和神经肌肉障碍的情况下使人们感到惊讶
开发环保电源生产技术。开发由竹,石灰石和姜黄制成的发电厂,以增加电解质溶液中电子的跳跃。这项研究旨在揭示姜黄作为从竹子和石灰石制造电解质溶液的催化剂的作用。这项研究的初始阶段始于高能量铣削(HEM)过程,将竹材料的大小降低到纳米尺寸。此外,竹子和石灰石溶解在水中,比为1:1。所使用的电极是铝和铜。姜黄用作催化剂,并增加原子数。比较竹子,石灰与姜黄1:1:1。石灰石通过激活偶极力并具有结晶特性,溶解在离子中。测试结果表明,与姜黄混合之前,由竹子和石灰石材料产生的电压为508 mV。此外,姜黄的添加产生的电压为1631 mV。
今天,电池技术对所谓的LI电池进行了前所未有的多样化,其中包括其他单价(Na +或K +)和多价离子(例如Mg 2 +或Ca 2 +)。除其他因素外,通过建立更可持续和便宜的原材料平台的目标,使用更丰富的原材料,同时保持高能密度。对于这些新技术,决定性的作用落在电解质上,最终需要形成稳定的电极 - 电解质界面并提供齐全的离子电导率,同时保证高安全性。对聚合物基质中的金属离子的传输作为电池应用的实心电解质进行了广泛的研究,尤其是用于锂离子电池,现在也被认为用于多价系统。这构成了巨大的挑战,因为固体中的离子运输变得越来越困难。有趣的是,这个话题是80年代和90年代多年的关注主题,当时许多问题仍在引起问题。由于该领域的最新进展,在固体聚合物电解质中产生了多价离子转运的新可能性。出于这个原因,从这个角度来看,沿着记忆巷漫步,讨论当前的进步并敢于窥视未来。
ABSTRACT: Composite electrolytes comprising distinctive polyether (PEO) or polyester (PCL, P(CL- co -TMC)) polymers in combination with a high loading of Li 1.4 Al 0.4 Ti 1.6 (PO 4 ) 3 NASICON-type ceramic powders (LATP, 70 wt %) are investigated to gain insights into the limitations of their ion conductivity in resulting陶瓷固态电解质系统。在这里,LATP构成了具有公平离子电导率的有利的陶瓷锂离子导体,由于表面物种的有害形成(例如Li 2 CO 3)与空气和/或周围聚合物接触而导致的界面问题(例如Li 2 CO 3),并未立即受到限制。所有这些复合电解质中的锂离子转运都遵循聚合物基质中的慢动作状态,无论使用的聚合物的性质如何。有趣的是,与聚合物相比,与聚合物PEO基质相比,聚合物和陶瓷相之间的LI +离子在聚合物和陶瓷相之间的液体 +离子之间的交换表现出较弱的聚酯聚合物PCL和P(Cl- CO -TMC),与具有强LI-聚合物的聚合物的均衡相比。LATP粒子团聚,与其固体聚合物电解质(SPE)对应物相比,这些复合材料的较低锂离子电导率值的主要原因。这些发现为全稳态电池的功能复合电解质的开发增加了一步。关键字:li 1+x al x ti 2 - x(PO 4)3,全稳态电池,聚醚和聚酯聚合物,锂离子配位属性,界面锂离子传输
博士学位,化学和化学生物学 2015 论文:“铝离子电池:电解质和阴极” 研究顾问:Erik Menke 教授 加州大学默塞德分校 环境系统硕士 2008 论文:“用于聚光光伏电池的 Kohler 集成光学系统” 研究顾问:Roland Winston 教授 加州大学默塞德分校 理学学士,最优等成绩,物理学 2004 加州州立大学斯坦尼斯洛斯分校