电转气 (P2G) 设施和天然气发电装置为综合电力和天然气系统 (IENGS) 提供了灵活性,可用于风电调节和爬坡部署。本文提出了一种考虑 P2G 储能和风电爬坡成本的 IENGS 随机协调调度模型。介绍了带有 P2G 的天然气系统的运行模型,并分析了 P2G 集成的优势。为了解决风电和能源负荷的不确定性,生成了多种代表性场景。本文结合并分析了灵活的爬坡要求和成本,发现 P2G 可以提供灵活的爬坡。IENGS 的协调调度模型被表述为一个两阶段随机规划问题,其中第一阶段模型对电力系统的日前调度进行建模,第二阶段模型对天然气系统进行调度。对改进的 PJM 5 总线电力系统(带有 7 节点天然气系统)以及 IEEE 118 总线系统(带有 20 节点比利时天然气系统)进行的数值案例研究验证了 P2G 可以帮助容纳风电、提供额外的灵活爬坡能力并减少来自天然气供应商的天然气供应和天然气负荷削减。
摘要 . 本研究旨在实施一个优化模型,该模型用于连接重型车辆加油站的制氢设施,用于废物管理和运输领域。该模型由两个连续的混合整数线性规划问题组成。第一个问题解决车辆加油计划问题,第二个问题解决工厂设计和运营问题。该模型的输出是工厂的设计和运行参数以及车辆加油计划,以实现氢气的最低平准成本。研究了电力供应的不同可能性:电网电力、太阳能光伏和水力发电。最有利可图的选择是安装 10 MW 太阳能光伏场,连接 3.3 MW 电解器和 3700 kg 储存器。由此产生的氢气平准成本为 10.24 欧元/千克。如果不考虑售电收入,从电网购买电力成为最具成本效益的选择。这种情况下,电解器和储氢器的大小分别为 760 kW 和 405 kg,氢气的平准化成本为 13.75 欧元/kg。对后一种情况进行的敏感性分析表明,最合理的输入参数是电解器单位消耗和电力成本。还进行了统计分析,考虑了随机故障分布,获得了电解器容量为 700-800 kW 和氢气储氢器大小为 1300-1400 kg 的最佳值。考虑到目前的电价和没有补贴,氢气在能源市场的渗透成本仍然很高。
Elektrode 16旨在容纳3至8岁的骑手,并且具有高度可调的组件使其成为成长中的骑手的理想电动自行车。座椅中的可调节性超过4英寸,Elektrode 16可以舒适地适合37英寸至55英寸的儿童。用橡胶垫的折叠钢脚踏板在Elektrode 16上提供刚性和多功能性,从而使自行车轻松地转换为平衡自行车,并简单地折叠。孩子们可以学习使用Elektrode 16作为自行车的平衡自行车,而没有电动机摩擦/阻力,然后毕业于使用fotpegs和电动机/油门。车把设计促进了直立的骑行位置,而无需损害膝盖空间,随着孩子的成长提供额外的空间,并有了普通大小的车把和座椅,父母将有能力在他们认为合适的情况下更改和定制孩子的自行车。
*其他法案所需的许可证触发IAA OGD参与者| Illustrative – some components would not apply to same project YESAA – Yukon Environmental and Socio-Economic Assessment Act / MVRMA – Mackenzie Valley Resource Management Act / MBCA – Migratory Birds Convention Act / IBWTA – International Boundary Waters Treaty Act / CPRA – Canadian Petroleum Resource Act / Offshore Accords – Canada – NS and NFLD Offshore Accords / CEPA – Canadian Environmental Protection Act / Nuppaa - Nunavut计划和项目评估法(NUPPAA)< / div>