摘要:分布式能源系统的部署必须关注可再生能源发电的自用。创新的行业耦合策略可以发挥连接当地电力和天然气网络的作用。本研究旨在评估电转甲烷战略在城市能源区应用的能源和经济可行性。以一个住宅集群为例进行研究。两种光伏配置已用于评估不同可再生能源过剩条件下的替代天然气 (SNG) 产量。此后,通过改变系统规模实施电转甲烷战略。在能源和经济方面,一些重要的配置进行了相互比较。超过某个阈值限制,光伏尺寸的增加会略微提高有效自用能源。一旦系统规模合适,电转甲烷战略就可以利用所有可再生能源过剩,与单独使用光伏系统相比,潜在的能源消耗减少量几乎翻了一番。在大多数配置下,SNG 生产成本在 100 至 200 欧元/兆瓦时之间,与欧洲市场上的高天然气价格相比具有竞争力。因此,分散式 SNG 生产可以减少家庭年度支出,并可以缓解当前能源危机时期的能源贫困状况。
摘要:随着可再生电力整合为网络运营商带来电网平衡挑战,新的电网弹性方法受到能源研究界的广泛关注。电转气 (P2G) 应用可以生产和使用绿色氢气。因此,它们可以将更多的可再生能源整合到能源系统中。同时,物联网 (IoT) 解决方案可以优化分散系统中的可再生能源应用。尽管这两种技术在可再生能源丰富的电网发展中都具有战略重要性,但基于物联网和相关解决方案的 P2G 进步机会尚未成为可再生能源研究的前沿。为了填补这一研究空白,本研究提出了一个混合(主题和批判)系统文献综述,以探讨战略共同专业化机会如何出现在最近的出版物中。研究结果表明,P2G 和 IoT 可以在多能源系统和能源互联网的拟议框架内从根本上联系起来,但需要进一步实证研究它们的操作和战略整合(例如,降低成本、风险管理和政策激励)。
欧洲能源转型计划设立了明确的目标,即在绿色协议能源政策框架下到 2050 年实现气候中和的欧洲 [1]。欧盟委员会于 2021 年通过的“Fit for 55 0”一揽子计划为欧盟 2030 年气候和能源框架引入了更为严格的立法措施,包括可再生能源、能源效率、努力分担和排放标准立法、土地使用和林业以及能源税指令 [2]。现有的欧盟立法框架已被用于实施绿色协议愿景,明确表明未来能源结构中可再生能源 (RES) 的比重将增加,以及排放交易体系 (ETS) 对所有能源部门实施更严格的脱碳机制。太阳能和风能的不断普及极大地激励了电网的脱碳。然而,向欧盟碳中和能源系统有效利用低碳和可再生能源需要扩展到热力和运输领域,同时促进供应安全。通过结合节能和用电子燃料(基于电力生产氢气、合成气体和液体)取代化石燃料,可以将可再生能源发电系统的规模扩大 2 到 2.5 倍 [3],从而实现最终能源需求领域的气候中和。通过提高电气化程度实现的能源转型不仅对能源系统提出了巨大的挑战,包括太阳能和风能发电场的巨大容量和投资,而且对供应安全以及技术、经济和监管层面所需的额外措施也提出了挑战。目前,德国 [4]、美国 [5] 和中国 [6] 的可再生能源渗透率较低,已经报道了可再生能源的削减,导致可再生能源浪费和市场电价为负。电力供需时间间隔方程既需要运行单元的灵活性和同步性,也需要额外的能源储存措施、部门耦合和电网基础设施升级,以及高效的多国综合系统和市场,以经济高效地平衡可变可再生能源发电[7]。2050 年欧盟碳中和系统的能源建模研究解决了多功能能源储存技术的需求,以避免在可再生能源可用性高时通过负荷转移和灵活性进行削减,以及避免在可再生能源可用性低时进行负荷削减[3,8]。特别是,由于储存需求与总发电量的非线性增长有关,氢气和合成燃料形式的季节性能源储存被认为非常重要,因为报告称,电子燃料在最终能源中的份额为 20%。
电转气技术可以实现电网与气网间能量的双向流动,有利于改善综合能源系统的能量耦合、提高运行灵活性和经济性。本研究根据电转气设备的特点,在改进的P2G模型基础上,提出了详细的综合能源系统模型,并提出最优效率匹配系数以提高能源设备利用率。针对碳排放分配问题,引入碳交易机制,建立兼顾经济效益与成本(即销售效益、运营成本、碳交易成本、风电和光伏限电惩罚措施)的优化模型。案例研究验证了所提优化模型的优越性。此外,结果表明带气罐的电转气模式在综合能源系统综合运行能力方面具有明显优势。
摘要:本研究对包含创新技术(固体氧化物电解质电池共电解器和实验性甲烷转化器)并配有可再生发电机的尖端电转气系统进行了完整的热经济性分析。进行的经济分析(从未应用于此类系统)旨在通过现金流分析估算产品的合成天然气成本。对各种工厂配置(具有不同的工作温度和关键部件的压力水平(电解器:600-850 ◦ C;1-8 bar))进行了比较,以确定可能的热协同效应。进行了参数研究,以评估热力学布置和经济边界条件的影响。结果表明,环境压力系统与共电解器和高温甲烷转化器之间的热协同作用的组合具有最佳的经济性能(合成天然气值降低高达 8%)。如果考虑到一些技术经济驱动因素(存储系统和可再生能源发电的适当规模比、电解池成本的发展和碳税的引入),研究中的电转气解决方案所获得的合成天然气的生产成本(比天然气价格低 80%)在天然气市场上将具有竞争力。
摘要。本研究分析了电转液路线在化学领域合成费托石蜡的技术经济潜力。费托生产装置由电解产生的氢气和沼气升级产生的二氧化碳供应。在分析中,确定了德国和意大利的 17 个优先地点,这些地点可确保 1 吨/小时的二氧化碳流量。对于每个地点,估算了可用的二氧化碳流量以及风能和太阳能光伏的容量系数。使用基于元启发式的方法来确定所提系统的成本最优流程设计。因此,评估了氢气储存、电解器、光伏场和风力发电场的规模。该分析研究了从全电网到全可再生能源配置中来自电网的电力百分比不同的可能性。结果表明,全电网运行条件下费托合成蜡生产的最低成本为 6.00 欧元/千克,全可再生能源解决方案的最低成本为 25.1 欧元/千克。风能可用性在降低蜡成本方面发挥着关键作用。
摘要:工业部门脱碳对于实现可持续的未来至关重要。碳捕获和储存技术是主要选择,但最近,使用二氧化碳也被认为是一种非常有吸引力的替代方案,可以实现循环经济。在这方面,电转气是一种很有前途的选择,可以利用可再生 H 2 ,将其与捕获的二氧化碳一起转化为可再生气体,特别是可再生甲烷。由于可再生能源生产或可再生能源生产与消费之间的不匹配不是恒定的,因此必须储存可再生 H 2 或二氧化碳,以正常运行甲烷化装置并生产可再生气体。这项工作分析并优化了系统布局和存储压力,并提出了年度成本(包括资本支出和运营支出)最小化。结果表明,需要适当的压缩阶段来实现最小化系统成本的存储压力。该压力略低于二氧化碳的超临界压力,低于氢气的较低压力,约为 67 巴。最后一个量与储存和分配天然气的通常压力一致。此外,即使质量较低,H 2 的储存成本也高于 CO 2 ;这是因为 H 2 的密度低于 CO 2 。最后,结论是,压缩机成本是 CO 2 压缩中最相关的成本,但储罐成本是 H 2 中最相关的成本。
这份由清洁能源国家联盟 (CESA) 编写的报告涵盖了欧洲海上风力发电绿色氢能发展的计划、战略、提案和挑战。它描述了促进其发展的当前政策驱动因素,以及潜在的未来支持机制、价值流和市场壁垒。此外,它还研究了使用绿色氢天然气混合物发电的成本、安全性和排放影响。报告最后提出了对美国的影响,并建议联邦政府和各州采取措施确保未来任何绿色氢能的使用都不会对前线社区产生负面影响。附录中包括了四个关于欧洲氢能战略和示范项目的案例研究。
摘要:人们对全球温室气体排放的日益关注促使电力系统利用清洁高效的资源。与此同时,可再生能源在全球能源前景中发挥着至关重要的作用。然而,这些资源的随机性增加了对储能系统的需求。另一方面,由于多能源系统比单一能源系统效率更高,因此开发基于不同类型能源载体的此类系统对公用事业公司来说更具吸引力。因此,本文对多载体微电网 (MCMG) 在存在高效技术(包括压缩空气储能 (CAES) 和电转气 (P2G) 系统)的情况下的运行进行了多目标评估。该模型的目标是最大限度地降低运营成本和环境污染。除了充电和放电模式外,CAES 还具有简单循环模式操作,从而为系统提供更大的灵活性。此外,该模型还采用了需求响应程序来缓解峰值。所提出的系统参与电力和天然气市场以满足能源需求。采用加权和方法和基于模糊的决策来折中冲突目标函数的最优解。在样本系统上检验了多目标模型,并讨论了不同情况下的结果。结果表明,耦合 CAES 和 P2G 系统可减轻风电弃风,并将成本和污染分别降至 14.2% 和 9.6%。
电转气 (P2G) 设施和天然气发电装置为综合电力和天然气系统 (IENGS) 提供了灵活性,可用于风电调节和爬坡部署。本文提出了一种考虑 P2G 储能和风电爬坡成本的 IENGS 随机协调调度模型。介绍了带有 P2G 的天然气系统的运行模型,并分析了 P2G 集成的优势。为了解决风电和能源负荷的不确定性,生成了多种代表性场景。本文结合并分析了灵活的爬坡要求和成本,发现 P2G 可以提供灵活的爬坡。IENGS 的协调调度模型被表述为一个两阶段随机规划问题,其中第一阶段模型对电力系统的日前调度进行建模,第二阶段模型对天然气系统进行调度。对改进的 PJM 5 总线电力系统(带有 7 节点天然气系统)以及 IEEE 118 总线系统(带有 20 节点比利时天然气系统)进行的数值案例研究验证了 P2G 可以帮助容纳风电、提供额外的灵活爬坡能力并减少来自天然气供应商的天然气供应和天然气负荷削减。