通过金属-绝缘体-金属隧道结的非弹性隧穿 (LEIT) 发光是一种超快发射过程。它是在集成电路上实现从电信号到光信号的超快转换的有前途的平台。然而,现有的 LEIT 器件制造程序通常涉及自上而下和自下而上的技术,这降低了它与现代微加工流程的兼容性并限制了其在工业扩大规模中的潜在应用。在这项工作中,我们通过使用原子层沉积生长的多层绝缘体作为隧道屏障来解除这些限制。我们首次完全通过微加工技术制造 LEIT 器件,并在环境条件下表现出稳定的性能。在整个有源区域上观察到均匀的电致发光,发射光谱由金属光栅等离子体形成。在 LEIT 中引入多层绝缘体可以为设计隧道屏障的能带景观提供额外的自由度。所提出的制备稳定的超薄隧道势垒的方案也可能在广泛的集成光电器件中找到一些应用。
#电驱动:新的动力传动系统融合了梅赛德斯-奔驰多年的工程卓越技术。即将推出的全电动 MMA(梅赛德斯-奔驰模块化架构)车型的电驱动装置(电驱动装置 - EDU 2.0)代表了梅赛德斯-奔驰新一代电驱动装置的首次亮相。同时,它将 VISION EQXX 的驱动技术(配备 800 伏系统和碳化硅 (SiC) 逆变器)带入紧凑级车型。紧凑型 200 kW 电驱动装置配备后轴上的永磁励磁同步电机 (PSM),完全由梅赛德斯-奔驰工程师内部开发。高性能电力电子设备配备 SiC 逆变器,可实现特别高效的能源利用。此外,4MATIC 车型在前轴上配备一个 80 kW 驱动装置,也配备 SiC 逆变器。
在环境条件下将硝酸盐(NO3−)电催化转化为NH3(NO3RR)为哈伯-博施法提供了一种有希望的替代方案。优化NO3−向NH3的有效转化的关键因素包括增强中间体在催化剂表面的吸附能力和加快加氢步骤。在此,基于定向演化策略设计了Cu/Cu2O/Pi NWs催化剂,以实现NO3−的有效还原。受益于定向演化过程中形成的富OV的Cu2O相和原始Cu相的协同作用,该催化剂对各种NO3RR中间体表现出更好的吸附性能。此外,在定向演化过程中锚定在催化剂表面的磷酸基团促进了水的电解,从而在催化剂表面产生H+并促进NO3RR的加氢步骤。结果显示,Cu/Cu 2 O/Pi NWs 催化剂表现出优异的 NH 3 FE(96.6%)和超高的 NH 3 产率,在 1 m KOH 和 0.1 m KNO 3 溶液中,在 − 0.5 V 相对 RHE 下为 1.2 mol h − 1 g cat. − 1。此外,催化剂的稳定性因磷酸基对 Cu 2 O 相的稳定作用而增强。这项工作突出了定向演化方法在设计 NO 3 RR 催化剂中的前景。
拟议的特刊(SI)邀请与可再生能源、能源存储、电力转换器和用于电气化交通和智能电网应用的电驱动系统相关的投稿 [ 1 – 10 ]。特别感兴趣的主题包括:• 电力转换器、电驱动和能源存储的新兴技术;• 电力转换器、电驱动和能源存储设备的老化机制;• 用于能源存储系统(ESS)监控和管理的电子控制单元;• 充电状态(SoC)和健康状态(SoH)的在线估计;• 用于可再生能源(RES)的电力电子转换器;• 电动汽车的快速充电器和智能充电器,包括无线电力传输;• 电子交通智能电网中充电基础设施的集成;• 可再生能源和 ESS 的预测诊断;• 能源存储和可再生能源的硬件(HW)和软件(SW)的设计和验证方法; • 用于能源存储、转换和管理的嵌入式系统、机器学习(ML)、人工智能(AI)和深度神经网络(DNN); • 将物联网(IoT)和数字化融入电子交通。
在 (001) Si 平台上外延生长 III-V 激光器正成为低成本、节能和晶圆级光子集成电路的终极集成策略。随着在 III-V/Si 兼容衬底上生长的激光二极管的性能向商业化发展,外延 III-V 激光器和 Si 基波导之间的光接口问题变得越来越紧迫。作为替代方案,选择性区域生长在 Si 上产生无缓冲 III-V 激光器,从而从本质上促进与 Si 光子学的有效光耦合。由于选择性生长的无位错 III-V 晶体的尺寸通常限制在亚波长尺度,因此主要挑战在于实现电驱动激光器,特别是如何在不引起大的光吸收损失的情况下对金属触点进行图案化。在本篇观点中,我们简要概述了在 (001) Si 平台上选择性生长的最先进的 III-V 族激光器,并讨论了这种集成方法的前景,重点介绍了实现电驱动设备的前景。我们重点介绍了选择性异质外延提供的独特优势以及实际应用面临的挑战和潜在解决方案。
在家为您的车辆充电................................................................................................................................................................137 已安装的充电点...................................................................................................................................................137 家庭充电指南...................................................................................................................................................137 充电时的医疗注意事项......................................................................................................................................138 充电端口......................................................................................................................................................................138 识别电动充电器的标签.............................................................................................................................................140 快速充电......................................................................................................................................................................142 慢速充电......................................................................................................................................................................142 充电信息......................................................................................................................................................................144 均衡充电......................................................................................................................................................................144 充电时间......................................................................................................................................................................144 放电......................................................................................................................................................................148 电驱动装置................................................................................................................................................150
保护效果可能是必需的,但维护也很重要。另外,在航空和电气系统中,依赖于电机的系统可能会过时,因此将与新的电气系统一起使用。电力管理系统是有关能源完善和大规模开船术语的相关资料,在这些系统开发过程中说明了后续的工作。这些集中在新结构或行动神经架构的基础上的电驱动系统概念。压电共振研究系统是压电动作神经元的基础。作为一种最新的替代品,陶瓷压电陶瓷具有令人兴奋的结构和频率。 Lorsqu'elle 对应于结构的自然频率,振动的振幅增强共振现象,générant des niveaux élevés
摘要。本文综述了超材料在生物医学领域的广泛应用和研究现状,展示了其在提高诊断准确性、促进组织再生和治疗疾病方面的巨大潜力。本文综述了超材料在生物医学领域的广泛应用和研究现状,展示了其在提高诊断准确性、促进组织再生和治疗疾病方面的巨大潜力。与传统材料的性能相比,超材料凭借其独特的物理性质和高度的可设计性,在生物医学领域取得了令人瞩目的进展。以太赫兹超材料为例,通过将其高灵敏度与高可设计性相结合,实现了对生物分子和组织的精确检测。以太赫兹超材料为例,通过将其高灵敏度与生物组织的高穿透性相结合,实现了对生物分子和组织的精确检测。另一方面,机械超材料通过模拟生物组织的力学行为,促进了柔性应变传感器灵敏度的提高和组织工程的进步。此外,光驱动、热驱动、磁驱动、手性和电驱动等多功能超材料为生物技术产业开辟了新的可能性。此外,光驱动、热驱动、磁驱动、手性和电驱动等多功能超材料为生物医学领域开辟了新的可能性。尽管存在生物相容性和材料降解速率控制的挑战,超材料在疾病诊断、治疗和药物发现等方面的应用仍然很有希望。未来的研究应侧重于提高材料的生物相容性,开发先进的制造技术,促进个性化医疗,并加强跨学科合作,进一步探索超材料在生物医学中的潜力。
印度政府的旗舰电动汽车需求促进政策——“加快采用和制造电动汽车”(FAME)计划,提供了充电基础设施建设的激励措施和其他支持。该计划的第二阶段 FAME II 于 2024 年 3 月结束。第三阶段,即“总理创新汽车改进电驱动革命”(PM E-DRIVE)计划,于 2024 年 9 月宣布(重工业部,2024b)。该计划于 2024 年 10 月 1 日启动,有效期至 2026 年 3 月 31 日,将拨款 200 亿卢比用于充电基础设施建设,但更多细节(例如激励金额、成本组成部分和充电基础设施的计划位置)尚未公布(重工业部,2024d)。