体细胞DNA拷贝数变化(CNV)在癌症中很普遍,并且可以驱动癌症进展,尽管在改变细胞信号状态下通常具有未表征的作用。在这里,我们整合了5,598个肿瘤样品的基因组和蛋白质组学数据,以鉴定导致异常信号转导的CNV。由此产生的关联概括了已知的激酶 - 基底关系,并进一步的网络分析优先考虑可能因果基因。在癌细胞系中复制了43%,包括在多种肿瘤类型中鉴定出的44种强大的基因磷材料。实验验证了几个预测的河马信号调节剂。使用RNAi,CRISPR和药物筛选数据,我们发现癌细胞系中激酶成瘾的证据,确定靶向激酶依赖性细胞系的抑制剂。我们建议基因的拷贝数状态,作为激酶抑制差异影响的有用预测指标,这是一种抗癌疗法的策略。
附加声明:是的,存在潜在的竞争利益。N.W.、A.C.、A.J.T.和 G.T.¦ 领导了 dPCR MEGA 方法的专利申请。M.M.、M.H.P.和 S.S. ¦ 领导了用于增强 HDR 的药物抑制剂的专利申请。这项工作得到了英国威康信托基金会 (217112/Z/19/Z) 的支持。A.J.T.、C.B.、A.C.、G.T.和 G.S.还得到了英国国家健康和护理研究所、大奥蒙德街儿童医院、国家健康服务基金会和伦敦大学学院的生物医学研究中心的支持。A.J.T.是 Orchard Therapeutics、Generation Bio、Carbon Biosciences 和 4BIO Capital 的科学顾问委员会成员。C. Booth 在过去 3 年中为 SOBI 和 Novartis 提供临时咨询服务,并为 SOBI 和 Chiesi 制作教育材料。P.A.、S.W.、C.R.J、G.S.、R.N.、M.M.、G.T.目前受雇于阿斯利康,可能是阿斯利康的股东
凯蒂·博斯韦尔(Katy Boswell)1:2,克里斯托夫·哈弗梅斯特(Christoph Hafemeister 4),埃文·波恩(Evon Poon)5,丽莎·E·肖·彼得·伯恩科普(Lisa E.
此预印本的版权所有者此版本于 2024 年 2 月 22 日发布。;https://doi.org/10.1101/2023.06.22.23291592 doi: medRxiv preprint
电荷密度波(CDW)是电子密度和原子位置的调制,其周期性不同于(通常与)基础的晶格[1]。CDW出现在各种材料中,它们可以内在地引起金属 - 绝缘体过渡[2]。CDW被认为是由嵌套,电子偶联,激子机制或其组合驱动的[1,3]。在这里,我们表明CDW也可以与CDW周期性以外的波矢量的基础晶格的变形有关。CDW与其他顺序参数的耦合(在元素硫的本情况下的晶格失真)不仅是CDW机制的一部分很重要,而且还改变了相变的特征。CDW以八个元素形成,其中七个处于高压[4-21]。CDW相的压力诱导的ONES集始终是第一阶转变,而高压转变归因于第一阶或二阶转变,通常涉及结构或光谱数据的外推[8,10,10,10,12 - 14,14,16,20,20,22,22]。如果CDW相是纯粹位移性的结构相变
摘要。我们提出了一项全面的数值研究,对梁导演望远镜的主镜上的热诱导的光差。尤其是我们研究了高功率激光诱导的变形,导致的单色畸变及其对成像和激光聚焦的影响,在共享的孔径束主系统中,原代望远镜镜的性能。作为一个实际的例子,我们考虑了一个基于6×4 kW的单模高功率激光源和具有500 mm圆形透明孔径的主镜。单色畸变的详细组合及其对光学性能的影响是为硼硅酸盐和Zerodur®基材提供的,具有相同的反射涂层,用于电流激光束主管的应用。我们的分析表明,使用Athermal底物(即Zerodur®),高功率激光器可以有效地指向具有高反射性涂层(> 99.9%)的主镜子的成像降解。另一方面,只有在严格控制的环境温度下,具有相对较高的热膨胀系数(即硼硅酸盐)的底物才能有效使用。©2021光学仪器工程师协会(SPIE)[doi:10.1117/1.oe.60.6.6.065102]
1 格拉斯哥大学癌症科学研究所 Wolfson Wohl 癌症研究中心,格拉斯哥 G61 1QH,英国;pbeer@doctors.org.uk(PB);andrew.biankin@glasgow.ac.uk(AVB)2 苏格兰西部 Beatson 癌症中心,格拉斯哥 G12 0YN,英国 3 NHS 大格拉斯哥和克莱德,格拉斯哥 G4 0SF,英国 4 维罗纳大学诊断与公共卫生系,意大利维罗纳 37134;vincenzo.corbo@univr.it 5 加州大学戴维斯分校生物科学学院微生物学与分子遗传学系,加利福尼亚州戴维斯 95616,美国; cihwang@ucdavis.edu 6 加州大学戴维斯分校综合癌症中心,美国加利福尼亚州萨克拉门托 95817 7 意大利维罗纳大学医院信托胰腺研究所普通和胰腺外科部,37134 维罗纳,意大利;salvatore.paiella@univr.it 8 罗马大学分子医学系,00185 罗马,意大利;valentina.silvestri@uniroma1.it (VS);laura.ottini@uniroma1.it (LO) 9 格拉斯哥皇家医院苏格兰西部胰腺科,英国格拉斯哥 G31 2ER 10 新南威尔士大学医学院西南悉尼临床学院,澳大利亚新南威尔士州利物浦 2170 * 通讯地址:raffaella.casolino@glasgow.ac.uk
四个直接数值模拟 (DNS) 数据集涵盖了 8 至 14 的有效自由流马赫数,用于研究高超音速边界层中湍流引起的气动光学畸变行为。数据集包括两个来自平板边界层(马赫数 8 和 14)的模拟数据集和两个来自尖锥流(马赫数 8 和 14)的模拟数据集。来自每个 DNS 的瞬时三维密度场被转换为折射率并进行积分以产生由湍流引起的光程差 (OPD) 分布。然后将这些值与文献中的实验数据和现有的 OPD 均方根模型进行比较。虽然该模型最初是为马赫数 ≤ 5 的流动开发的,但它为我们比较高超音速数据提供了基础。
研究了湍流引起的亚音速、超音速和高超音速边界层的气动光学畸变特性。使用了四个边界层的直接数值模拟 (DNS) 数据,这些边界层的标称马赫数范围从 0.5 到 8。亚音速和超音速边界层的 DNS 数据是平板流。两个高超音速边界层均来自入口条件为 8 马赫的流动,其中一个是平板流,另一个是尖锥上的边界层。这些数据集中的密度场被转换为折射率场,这些折射率场沿预期的光束路径积分,以确定光束穿过湍流场的折射时将经历的有效光程长度。然后,通过考虑与体边界层效应相关的平均路径长度和倾斜问题,确定光程差 ( ) 的分布。将 的均方根与现有模型进行比较。发现从亚音速和超音速数据确定的 值与现有模型非常匹配。可以预料的是,由于在模型推导过程中做出了强雷诺类比等假设,高超音速数据匹配得并不好。到目前为止,该模型从未与本文中包含的马赫数如此之高的流动或流过尖锥几何的流动进行比较。
传输电子显微镜(TEM)已被证明是所有搜索区域中极其强大且通用的工具,这些工具从原子量表空间分辨率下进行成像受益[1-3]。尽管可以从NM和Sub-NM分辨率的样品的静态快照中获得大量信息,但如果可以升级该技术的到达,则在升级该技术的范围以包括对样品结构,组合和对应用程序的响应中的质量变化以及其他元素的响应中的响应方式的研究中有明显的突破性进步,并在4 dectime of Ade aft eq afteremention中进行了四分之一的范围。与空间分辨率的外部进步形成鲜明对比(最近通过引入亚物化校正来打破了子角屏障[5,6]),由于固有的时间需要长时间的曝光时间,因此,TEMS的时间分辨率受到限制,以击败基本的射击限制,以击败基本的射击限制。给定TEM柱中的平均电子电流(通常低于1 µA),以便提供照明剂量足以实现高质量成像,需要以毫秒或更长的时间为单位的时间间隔。已经有多次尝试解决电子成像中的这种缺陷。一种解决方案是在电子柱中主要是非常低的电流,但是将电子在Ob-Ject平面的到达时间进行了综合,并以相同的确切方式重复了效应的发生效应的发生,并重复了数百万的标本照明[4]。这种频道镜检查允许在电子和磁场动力学(Pinem and Magement Vortex)的成像中进行开创性结果[8,9]。当样本动力学不能以相同的方式复制(不可逆的过程)时,就必须诉诸于单个镜头照明,这是一个将所有电子发送到一个时间持续时间