Loading...
机构名称:
¥ 1.0

传输电子显微镜(TEM)已被证明是所有搜索区域中极其强大且通用的工具,这些工具从原子量表空间分辨率下进行成像受益[1-3]。尽管可以从NM和Sub-NM分辨率的样品的静态快照中获得大量信息,但如果可以升级该技术的到达,则在升级该技术的范围以包括对样品结构,组合和对应用程序的响应中的质量变化以及其他元素的响应中的响应方式的研究中有明显的突破性进步,并在4 dectime of Ade aft eq afteremention中进行了四分之一的范围。与空间分辨率的外部进步形成鲜明对比(最近通过引入亚物化校正来打破了子角屏障[5,6]),由于固有的时间需要长时间的曝光时间,因此,TEMS的时间分辨率受到限制,以击败基本的射击限制,以击败基本的射击限制。给定TEM柱中的平均电子电流(通常低于1 µA),以便提供照明剂量足以实现高质量成像,需要以毫秒或更长的时间为单位的时间间隔。已经有多次尝试解决电子成像中的这种缺陷。一种解决方案是在电子柱中主要是非常低的电流,但是将电子在Ob-Ject平面的到达时间进行了综合,并以相同的确切方式重复了效应的发生效应的发生,并重复了数百万的标本照明[4]。这种频道镜检查允许在电子和磁场动力学(Pinem and Magement Vortex)的成像中进行开创性结果[8,9]。当样本动力学不能以相同的方式复制(不可逆的过程)时,就必须诉诸于单个镜头照明,这是一个将所有电子发送到一个时间持续时间

单次时间分辨的空间充电畸变...

单次时间分辨的空间充电畸变...PDF文件第1页

单次时间分辨的空间充电畸变...PDF文件第2页

单次时间分辨的空间充电畸变...PDF文件第3页

单次时间分辨的空间充电畸变...PDF文件第4页

单次时间分辨的空间充电畸变...PDF文件第5页

相关文件推荐

2023 年
¥1.0
2023 年
¥5.0