Loading...
机构名称:
¥ 1.0

摘要:使用端到端卷积神经网络 (ConvNet) 的深度学习已应用于多种基于脑电图 (EEG) 的脑机接口任务,以提取特征图并对目标输出进行分类。然而,EEG 分析仍然具有挑战性,因为它需要考虑影响提取特征表征能力的各种架构设计组件。本研究提出了一种基于 EEG 的情绪分类模型,称为多核时空卷积网络 (MultiT-S ConvNet)。该模型使用多尺度核来学习各种时间分辨率,并应用可分离卷积来查找相关的空间模式。此外,我们使用轻量级门控机制增强了时间和空间滤波器。为了验证 MultiT-S ConvNet 的性能和分类准确性,我们在基于 EEG 的情绪数据集 DEAP 和 SEED 上进行了受试者相关和受试者无关的实验。与现有方法相比,MultiT-S ConvNet 具有更高的准确度结果和一些可训练参数。此外,所提出的时间滤波多尺度模块能够提取广泛的 EEG 表征,涵盖短波长到长波长的成分。该模块可进一步应用于任何基于 EEG 的卷积网络模型,其能力有望提高模型的学习能力。

用于 EEG 的多核时间和空间卷积 - ...

用于 EEG 的多核时间和空间卷积 - ...PDF文件第1页

用于 EEG 的多核时间和空间卷积 - ...PDF文件第2页

用于 EEG 的多核时间和空间卷积 - ...PDF文件第3页

用于 EEG 的多核时间和空间卷积 - ...PDF文件第4页

用于 EEG 的多核时间和空间卷积 - ...PDF文件第5页

相关文件推荐

2025 年
¥1.0
2023 年
¥3.0
2025 年
¥1.0
2021 年
¥2.0
2024 年
¥1.0
2023 年
¥1.0
2023 年
¥5.0
2020 年
¥1.0