抽象光子学有望在量子技术中发挥独特的作用,用于计算,通信和传感。同时,具有固有的相位稳定性和高性能的纳米级成分,还具有缩放速度的途径。但是,每个集成平台都有一组独特的优势和陷阱,可以限制其力量。到目前为止,量子光子电路的最先进的演示是在硅光子中。但是,薄膜硅锂(TFLN)正在成为具有独特功能的强大平台。制造的进步使任何集成光子平台的损失指标具有竞争力,而其较大的二阶非线性则提供了有效的非线性处理和超快速调制。在这篇简短的综述中,我们探讨了动态量子电路的前景,例如多路复用光子源和纠缠产生 - 在硅(TFLN/SI)光子学上的混合TFLN(TFLN/SI)光子学上,并认为混合TFLN/SI光子学可能具有明天的光子量子技术的能力。
蛋白质的展开形式是氨基酸的线性序列。蛋白质结构预测试图找到给定蛋白质的天然构象,这在药物和疫苗开发中具有潜在的应用。经典的蛋白质结构预测是一个 NP 完全的、未解的计算问题。然而,量子计算有望提高经典算法的性能。在这里,我们在二维方格上的疏水-亲水模型中开发了一种量子算法,用于解决任何长度为 N 的氨基酸序列的问题,其速度比经典算法快二倍。这种加速是使用 Grover 的量子搜索算法实现的。该算法可用于任意长度的氨基酸序列。它包括三个阶段:(1)准备一个编码所有可能的 2 2 ( N − 1 ) 种构象的叠加态,(2)并行计算每种可能构象的坐标和能量,以及(3)找到具有最小能量的构象。空间上的渐近复杂度为 O ( N 3 ) ,而与经典算法相比,获得的加速比是二次的。我们已使用 Qiskit SDK 在 IBM Quantum 的 qasm 模拟器上成功模拟了该算法。此外,我们还通过计算找到正确构象的理论概率进一步证实了结果的正确性。
以非侵入性和定量的方式在体内实时追踪细胞、分子和药物是当代医学的优先需求,用于阐明细胞功能、监测病理过程和制定有效的治疗策略。[1] 在现有的诊断技术中,基于质子的磁共振成像( 1 H-MRI)在对软组织进行成像方面表现良好,没有深度限制,可以提供高分辨率、解剖和功能信息,而无需使用电离辐射和放射性核素。 [2] 为了进一步增强 MRI 对比度,通常使用钆或氧化铁基探针进行诊断,但它们的敏感性和特异性有限,并且其安全性仍存在争议,因为经常有毁灭性的晚期不良反应被报道或仍有待研究。 [3] 作为这些造影剂的替代品,基于氟化( 19 F)化合物的替代品正变得越来越有前景,由于 19 F 具有高旋磁比,且体内背景可忽略不计,因此可提供“热点”成像功能。 [4] 因此,氟化探针在给药后可以直接检测并以高选择性进行定量分析,特别是当它们含有多种磁当量的 19 F 原子时,最近报道的超氟化分子探针 PERFECTA 就是这种情况(图 1)。 [5] 尽管 PERFECTA 具有尖锐的 19 F 单线态共振峰和合适的弛豫特性,但它显然不溶于水,对于生物医学应用,需要通过脂质乳化剂将其分散在水介质中,或封装到聚合物纳米颗粒或胶束中。 [5,6]
使液滴破碎。一般来说,液滴的产生方法主要有两种:膜乳液法16 – 18 和微流体法。膜乳液法是将分散流体直接注入连续流体中,这样可以有效地产生大量液滴。然而,由于剪切应力只能由分散流体来调节,因此膜乳液法很难控制液滴尺寸并获得高效的包封率。对于微流体,微加工可用于制造微流体装置,通过控制沿微通道的分散相和连续相的液流速率,可以高效地批量生产微液滴,并且液滴尺寸精度高,封装效率高。在微流体中,液滴的生成基于两个剪切应力源,使液滴在微通道连接处破碎:一个来自连续流体,另一个来自分散流体的表面润湿性和微通道表面条件之间的差异。因此,微流体对于双乳液液滴生成比膜乳液更有效。微流体中用于产生液滴的微通道可分为 3 种类型:T 型连接微通道、流动聚焦微通道和共流微通道。T 型连接微通道 19 – 21 是最简单的微通道,其中连续相沿主微通道流动,分散相沿微通道流动。
不同类型的液体固定表面,超疏水材料和涂料是良好的。有效的超疏水表面必须具有地形粗糙度和防水表面化学。微型或纳米乳状表面,通过微观图案制造,然后进行表面化学修饰[13,14],通常用于系统地探索超恐惧症的特性。但是,它们的织物需要在大规模应用上经济上可行的光刻过程。[15]为了克服这一问题,已经报道了用于预先处理超疏水表面和材料的众多替代解决方案。[16,17]中,通过喷涂沉积的涂料在工业和企业应用中都发现了市场。[15]然而,喷雾沉积过程和材料的随机性会导致涂层均匀性的变化,并带来了提供一致的高涂层质量的挑战。在很大程度上缺乏这些广泛使用涂层的润湿性能的系统定量评估,[18],可以使涂料程序和涂料配方的优化有益于优化。表面的润湿表征传统上是通过光接触角性测量法(CAG)进行的。[19]该技术在高度非润湿表面(例如超疏水涂层)上的准确性降低,在这些技术中,前进和退化的接触角的误差可以达到10°。[23][20–22]此外,人们普遍理解,这些测量不适合研究表面润湿性的空间异质性,因为几毫米的横向分辨率导致平均润湿性能在大面积上平均。
1 . 沈阳航空航天大学机电工程学院,沈阳 110136 2 . 航空数字化制造工艺国防重点学科重点实验室,沈阳 110136 3 . 吉林大学工程仿生教育部重点实验室,长春 130022 摘要 应用热压技术,提出了一种简单、经济有效的方法来制造具有稳健超疏水润湿状态的微结构高密度聚乙烯 (HDPE) 表面。在热压过程中,柔性模板中的微网格和微凹槽被 PE 熔体填充。随后,在 PE 薄膜表面形成两级微结构。当 5 μL 水滴滴在该 PE 薄膜表面时,其接触角为 151.8˚±2˚,滚动角 > 90˚。计算出表面上的水钉扎能力,滚落角是指定水滴体积的二次函数。具体而言,由于表面的固体-蒸汽复合界面,HDPE 薄膜上出现了 356 μN 的水钉扎力。同时,自清洁和浸泡测试表明,具有微柱的 HDPE 表面在外部压力下表现出强大的 Cassie 浸渍润湿状态。所提出的微结构表面表面制造方法是开发液滴操纵和功能性仿生聚合物表面的合适候选方法。
癌症仍然是全球一个重大的健康问题。最常见的化学治疗剂是小分子药物,通常与有毒的副作用和非特异性递送有关,从而导致治疗作用有限。本文介绍了基于脂质纳米颗粒进行癌症治疗的靶向药物输送系统的发展。脂质纳米颗粒由与白蛋白隐形涂层结合的脂质核心组成,并通过硫醇化学合成的一步方法将抗体靶向抗体。使用直径降低到87 nm的开发方法,能够封装小分子化合物的脂质纳米颗粒。对脂质纳米颗粒的细胞摄取研究,带有模型的药物尼罗红色红色表明,与游离药物相比,隐身涂层减少了非特异性细胞的摄取。此外,抗体结合导致了明显的细胞重定位。最后,结果表明,脂质纳米颗粒通过内吞途径进行细胞摄取。脂质纳米颗粒易于合成,在血清中稳定,并且具有用多功能针对受体的用途,使用抗体选择性地通过患病细胞选择性表达。因此,该系统可以减少癌症药物的毒性副作用,同时改善其对癌细胞的递送,从而增加治疗作用。
1 . 沈阳航空航天大学机电工程学院,沈阳 110136 2 . 航空数字化制造工艺国防重点学科重点实验室,沈阳 110136 3 . 吉林大学工程仿生教育部重点实验室,长春 130022 摘要 应用热压技术,提出了一种简单、经济有效的方法来制造具有稳健超疏水润湿状态的微结构高密度聚乙烯 (HDPE) 表面。在热压过程中,柔性模板中的微网格和微凹槽被 PE 熔体填充。随后,在 PE 薄膜表面形成两级微结构。当 5 μL 水滴滴在该 PE 薄膜表面时,其接触角为 151.8˚±2˚,滚动角 > 90˚。计算出表面上的水钉扎能力,滚落角是指定水滴体积的二次函数。具体而言,由于表面的固体-蒸汽复合界面,HDPE 薄膜上出现了 356 μN 的水钉扎力。同时,自清洁和浸泡测试表明,具有微柱的 HDPE 表面在外部压力下表现出强大的 Cassie 浸渍润湿状态。所提出的微结构表面表面制造方法是开发液滴操纵和功能性仿生聚合物表面的合适候选方法。
Yifei Jin 1,Kaidong Song 1,内华达州Gellermann 2,Yong Huang 1,3,4,* 1机械与航空航天工程系,佛罗里达大学,佛罗里达州盖恩斯维尔大学,佛罗里达大学
警告:不要在任何包含机械回流系统(其压力低于大气压)的系统中使用向大气开放的传统真空断路器。这包括所有指定为真空回流、可变真空回流或亚大气压回流的回流系统。如果必须在这样的系统中安装真空断路器,则应为仅在真空达到远超过系统设计特性的校准水平时加载以打开的类型。规格浮子和恒温蒸汽疏水阀,类型...铸铁,带恒温排气口。最大允许背压为入口压力的 99%。如何订购
