头孢泊肟是一种杀菌性头孢菌素类抗生素,可有效对抗多种革兰氏阴性和革兰氏阳性菌。它适用于治疗在感染菌尚未被确认之前或由已知敏感的细菌引起的以下感染。由对头孢泊肟敏感的菌引起的上呼吸道感染,包括鼻窦炎。对于扁桃体炎和咽炎,头孢泊肟应保留用于复发性或慢性感染,或用于已知或怀疑病原菌对常用抗生素有耐药性的感染。由对头孢泊肟敏感的菌引起的下呼吸道感染,包括急性支气管炎、慢性支气管炎复发或加重以及细菌性肺炎。由对头孢泊肟敏感的菌引起的上、下尿路感染,包括膀胱炎和急性肾盂肾炎。由对头孢泊肟敏感的病原体引起的皮肤和软组织感染,如脓肿、蜂窝织炎、感染性伤口、疖、毛囊炎、甲沟炎、痈和溃疡。淋病 - 无并发症的淋菌性尿道炎。
事实证明,CRISPR-Cas 编辑系统是功能基因组学研究的有力工具,但它们在许多非模型物种中的有效性仍然有限。在马铃薯和番茄病原菌疫霉菌中,之前开发了一种编辑系统,该系统表达毛螺菌科细菌 Cas12a 内切酶 (LbCas12a) 和来自 DNA 载体的引导 RNA。然而,该方法效率低下。基于编辑受疫霉菌生长和内切酶催化的最佳温度不匹配限制的假设,我们测试了两种策略,将两个目标基因的编辑频率提高了约 10 倍。首先,我们发现 LbCas12a (D156R) 中的突变可以促进编辑,据报道,这种突变可以在更宽的温度范围内扩大其催化活性。其次,我们观察到,在较高温度下瞬时孵育转化组织可以增强编辑效果。这些修改应该使 CRISPR-Cas12a 更适用于研究 P. infestans 及其亲属中的基因和蛋白质功能,特别是在较低温度下生长最佳的物种。
产铁载体率为37.95–49.55%。其固氮能力范围为49.23至151.22 μg/mL。这些菌株对植物病原菌具有很强的拮抗活性。特别是,A. chroococcum B-4148和A. vinelandii B-932抑制了禾谷镰刀菌、Bipolaris sorokiniana和Erwinia rhapontici的生长,而P. chlororaphis subsp. aurantiaca B-548对禾谷镰刀菌和B. sorokiniana表现出拮抗作用。由于所有测试菌株都具有生物相容性,因此它们被用于形成多个联合体。协同效应最大的菌群是菌群 6,其包含的菌株 B-4148、B-932 和 B-548 的比例为 1:3:1。该菌群的最佳营养培养基包含 25.0 g/L Luria-Bertani 培养基、8.0 g/L 糖蜜、0.1 g/L 七水硫酸镁和 0.01 g/L 硫酸锰水溶液。最佳培养温度为 28°C。我们研究中创建的微生物菌群在农业实践中具有很高的应用潜力。进一步的研究将集中于其在体外条件和田间试验中对植物(特别是谷类作物)生长发育的影响。
维管植物病原体通过宿主静脉长距离传播,导致危及生命的全身性感染。相反,非维管病原体仍然局限于感染部位,引发局部症状发展。维管疾病和非维管疾病的对比特征表明病因不同,但每种疾病的基础仍不清楚。在这里,我们表明水解酶 CbsA 充当维管植物和非维管植物致病机制之间的表型转换。cbsA 在黄单胞菌科的维管植物病原菌基因组中富集,而在大多数非维管物种中不存在。CbsA 表达使非维管黄单胞菌引起维管病,而 cbsA 诱变导致维管病减少或非维管病症状发展增强。系统发育假设检验进一步表明,cbsA 在多个非维管谱系中丢失,最近被一些维管亚群获得,这表明维管病是祖先的。我们的研究结果总体证明了单个基因座的获得和丢失如何促进复杂生态特征的进化。
橄榄油生产会产生大量的果渣,这些果渣通常被丢弃在土壤中,对农业和环境产生不利影响。此外,气候变化加剧了植物病害,并促进了有毒植物化学物质在农业中的使用。然而,橄榄磨坊废料具有作为可重复使用和宝贵的生物资源的巨大潜力。我们使用稀释乙醇(一种环保溶剂)提取了含有短和长寡半乳糖醛酸苷、短阿拉伯寡糖和多糖的级分。获得的提取物引发了拟南芥幼苗中植物先天免疫的关键特征,包括丝裂原活化蛋白激酶 MPK3 和 MPK6 的磷酸化以及防御基因(如 CYP81F2 、 WRKY33 、 WRKY53 和 FRK1 )的上调。值得注意的是,用橄榄果渣提取物对成年拟南芥和番茄植株进行预处理可启动防御反应,增强其对植物病原菌灰葡萄孢和丁香假单胞菌的抵抗力。我们的研究结果强调了在橄榄油生产后期收集的两相橄榄果渣在低成本和可持续的聚糖诱导剂中进行升级再造的机会,有助于减少化学合成农药的使用。
摘要 水稻细菌性叶枯病 (BLB) 被认为是一种具有经济价值的疾病,因为该疾病会导致所有水稻种植区产量严重下降。病原菌水稻白斑病 (Xoo) 产生的转录激活因子样效应物 (TALE) 分子与 SWEET 基因启动子的效应物结合元件 (EBE) 结合并激活 SWEET 基因的转录,使植物易患该疾病。某些水稻基因型对 Xoo 的先天抗性是由于 SWEET 基因上游调控区中的 EBE 发生突变。CRISPR 介导的易感基因/启动子的靶向修饰是提高水稻 BLB 抗性的有效方法。本研究尝试通过在当地流行的水稻基因型 CO51 中引入 OsSWEET13 基因的 EBE 插入缺失来抑制 TALE 触发的信号传导,采用 CRISPR/Cas9 介导的基因组编辑工具,以赋予 BLB 抗性。使用未成熟胚进行农杆菌介导的转化,然后进行再生,产生了四个独立的转化事件。发现代表三个事件的五株植物在目标序列中有一个核苷酸缺失。EBE 中的这些缺失突变可能会干扰相应 TALE 的结合,从而赋予对某些 BLB 菌株的抗性。
霜霉病抗性 6 (DMR6) 蛋白是一种 2-氧戊二酸 (2OG) 和 Fe(II) 依赖性加氧酶,参与水杨酸 (SA) 代谢。SA 被认为是一种非生物胁迫耐受性增强剂,在番茄中发现 DMR6 的失活会增加其水平并诱导对多种病原体的抗病性。通过应用 CRISPR/Cas9 技术,我们生成了 Sldmr6-1 番茄突变体并测试了它们对干旱和晚疫病的耐受性。野生型番茄品种‘San Marzano’及其 Sldmr6-1 突变体被剥夺了 7 天的水。WT植物表现出严重的枯萎,而T 2 Sldmr6-1突变体叶片肿胀,并保持较高的土壤相对含水量。生态生理测量表明,Sldmr6-1突变体采取了节水行为,通过降低气孔导度来降低蒸腾速率。在干旱胁迫下,同化率也降低,导致气孔下腔中的CO 2浓度没有改变,并提高了水分利用效率。此外,在Sldmr6-1突变体中,干旱胁迫诱导抗氧化相关基因SlAPX和SlGST的上调以及参与ABA分解代谢的SlCYP707A2基因的下调。最后,我们首次在番茄中强调,Sldmr6-1 突变体对晚疫病的病原菌致病菌的敏感性降低。
1. Sahoo J、Mishra R、Joshi RK (2024) 批量分离 RNA 测序 (BSR-Seq) 结合 SNP 基因分型对洋葱 (Allium cepa L.) 紫斑抗性基因进行定位和表征。植物分子生物学报告。https://doi.org/10.1007/s11105-024-01466-1 (IF-1.6)。2. Mahanty B、Mishra R、Joshi RK (2023) 洋葱 (Allium cepa L.) 对镰刀菌基底腐病感染的 miRNome 动态的全球研究。生理和分子植物病理学。https://doi.org/10.1016/j.pmpp.2023.102157。(IF-2.89)。 3. Sahoo J、Mishra R、Joshi RK (2023) 开发与紫斑病抗性相关的 SNP 标记,用于洋葱 (Allium cepa L.) 育种中的标记辅助选择。3 生物技术。https://doi.org/10.1007/s13205-023-03562-7 (IF-2.89)。4. Mahanty B、Mishra R、Joshi RK (2023) 尖镰孢菌 f.sp cepae 小 RNA (Foc-sRNA) 通过跨界 RNA 干扰促进洋葱 (Allium cepa L.) 的疾病易感性。生理和分子植物病理学。125: 102018。https://doi.org/10.1016/j.pmpp.2023.102018。(IF- 2.74)。 5. Sahoo J、Mahanty B、Mishra R、Joshi RK (2023) 开发与紫斑病抗性相关的 SNP 标记,用于洋葱 (Allium cepa L.) 育种中的标记辅助选择。3 Biotech。13: 137。https://doi.org/10.1007/s13205-023-03562-7。(影响因子 2.89)。6. Mahanty B、Mishra R、Joshi RK (2023) 植物与真菌病原体之间的跨界小 RNA 通讯 - 最新更新和未来农业的前景。RNA 生物学。https://doi.org/10.1080/15476286.2023.2195731。(影响因子:4.77)。 7. Mahanty B、Mishra R、Joshi RK (2023) 雌雄异株葫芦科植物的性别分化——分子视角。生物技术研究杂志。18(2): 118-126。https://doi.org/10.25303/1802rjbt1180126 (IF-0.35)。8. Mahanty B、Mishra R、Joshi RK (2022) Zn(II) 2 Cys 6 簇基因家族的分子表征及其与洋葱基腐病病原菌 Fusarium oxysporum f. sp. cepae 致病性的关联。生理和分子植物病理学。https://doi.org/10.1016/j.pmpp.2021.101782。 (影响因子 - 2.74) 9. Mallick T、Mishra R、Mohanty S、Joshi RK (2022) 马铃薯软腐病原菌 Pectobacterium carotovorum 菌株 ICMP 5702 的全基因组分析,以预测其遗传特征的新见解。Plant Pathol J. 38(2): 102-114。https://doi.org/10.5423/PPJ.OA.12.2021.0190 (影响因子:2.32)。10. Nanda S、Kumar G、Mishra R、Joshi RK (2022) 微生物辅助缓解马铃薯中重金属毒性
剂量和用法用量 用法用量取决于适应症、感染的严重程度和部位、病原菌对环丙沙星的敏感性、患者的肾功能以及儿童和青少年的体重。治疗时间取决于疾病的严重程度和临床和细菌学病程。治疗某些细菌感染(如铜绿假单胞菌、不动杆菌或葡萄球菌)可能需要更高剂量的环丙沙星并与其他适当的抗菌剂共同给药。治疗某些感染(如盆腔炎、腹腔内感染、中性粒细胞减少症患者感染和骨和关节感染)可能需要与其他适当的抗菌剂共同给药,具体取决于所涉及的病原体。成人:环丙沙星片的成人口服推荐剂量为 250 毫克 - 750 毫克,每日两次,具体取决于感染的严重程度或遵医嘱。儿科人群:环丙沙星片的成人口服推荐剂量为 10-20 毫克/公斤体重,每日两次,具体取决于感染的严重程度或遵医嘱。儿科患者环丙沙星的最大日剂量为,严重感染时每次剂量为 750 毫克,轻度至中度感染时每次剂量不超过 500 毫克。老年患者:老年患者应根据感染的严重程度和患者的肌酐清除率选择剂量。肾功能和肝功能不全:肾功能不全患者的推荐起始剂量和维持剂量:
吲哚-3-乙酰胺 (IAM) 是某些植物病原菌中第一个被证实的生长素生物合成中间体。外源施用 IAM 或通过过表达拟南芥中的细菌 iaaM 基因产生 IAM 会导致生长素过量产生表型。然而,植物是否使用 IAM 作为生长素生物合成的关键前体仍不确定。在此,我们报告了从正向遗传筛选中分离拟南芥中的 IAM 水解酶 1 (IAMH1) 基因,该筛选用于显示正常生长素敏感性的 IAM 不敏感突变体。IAMH1 有一个相近的同源物,名为 IAMH2,位于拟南芥 IV 染色体上 IAMH1 的旁边。我们使用我们的 CRISPR/Cas9 基因编辑技术生成了 iamh1 iamh2 双突变体。我们发现,IAMH 基因的破坏使拟南芥植物对 IAM 处理产生抗性,同时也抑制了 iaaM 过表达表型,这表明 IAMH1 和 IAMH2 是拟南芥中将 IAM 转化为 IAA 的主要酶。iamh 双突变体没有表现出明显的发育缺陷,这表明 IAM 在正常生长条件下在生长素生物合成中不起主要作用。我们的研究结果为阐明 IAM 在生长素生物合成和植物发育中的作用奠定了坚实的基础。