• 2022 年 10 月 27 日,纽约州第 20.2 号行政命令到期,该命令暂停了向 19 岁或以上人群接种猴痘疫苗的医疗保健提供者必须征得接种者同意才能向纽约州免疫信息系统 (NYSIIS) 或纽约市免疫登记处 (CIR) 报告此类疫苗接种情况的要求。现在,向 19 岁或以上人群接种猴痘疫苗的医疗保健提供者必须征得接种者同意才能向 NYSIIS 或 CIR 报告此类疫苗接种情况。 • 虽然纽约州行政命令 20.2 已过期,但非传统疫苗接种者(例如牙医、高级或中级急救医疗技术人员、持照或认证的专业助产士、注册护士、执业护士、验光师、护理人员、药剂师、药房实习生、药房技术人员、医师助理、足病医生、呼吸治疗师和兽医)可根据美国食品药品监督管理局 (FDA) 紧急使用授权 (EUA) 和《公共准备和应急准备 (PREP) 法案》继续接种疫苗。 • 自 2022 年 10 月 6 日起,根据纽约官方法规、规则和条例第 10 篇第 23.1 节,猴痘病毒已被添加到性传播疾病名单中。此项增加是通过紧急法规颁布的,该法规有效期为 90 天(至 2023 年 1 月 4 日),可能会继续或永久采用。 《公共卫生法》授权医疗保健提供者在未经父母或监护人同意的情况下,为 18 岁以下的未成年人诊断、治疗和开具与性传播感染 (STI) 相关的护理。因此,在以下概述的条件下,不再需要父母或监护人的同意才能为未成年人接种 JYNNEOS 疫苗。• 提醒一下,全州资格现已扩大到包括所有有感染猴痘风险的个人的免疫接种。• 截至 2022 年 9 月 28 日,疾病控制和预防中心 (CDC) 更新了其关于使用 JYNNEOS 的临时临床考虑,涉及 JYNNEOS 疫苗的皮内 (ID) 给药;18 岁以下人群的 JYNNEOS 疫苗接种时间表和给药方案;JYNNEOS 疫苗与结核菌素皮肤试验共同给药;以及特定人群的疫苗接种注意事项。关于猴痘疫苗的要点
1. 关于要实施的疫苗接种策略,HAS 考虑了以下因素:- MPOX 1,2,3 的临床和病理生理特征:o MPOX 是由正痘病毒 MPXV 引起的疾病。它是一种病毒感染,可在人与人之间传播,主要通过密切接触传播,包括性交,有时也可通过 COPD 患者接触过的物体和表面从环境传播给人。在某些野生动物存在 MPOX 病毒的环境中,该病毒也可以从受感染的动物传播给与它们接触的人。 o 慢性阻塞性肺病 (COPD) 可通过多种体征和症状表现出来,其严重程度各有不同(一般症状的强度、皮疹的强度、可能的内脏受累的强度)。 MPOX 通常表现为水疱性皮肤和/或粘膜皮疹,可能伴有发烧、头痛、肌肉痛、背痛、乏力和淋巴结肿大。皮疹会影响面部、手掌、脚底、腹股沟、生殖器和/或肛门区域。除一些例外,一般症状会在不到两周的时间内消失,水疱会发展为结痂然后愈合。 o 对于某些人来说,这种疾病可能很严重,某些并发症甚至可能导致死亡。新生儿、儿童、孕妇和免疫缺陷者(例如艾滋病期感染艾滋病毒的人)可能会发展为严重的疾病。根据现有数据,死亡率在 0.1% 到 10% 之间,取决于多种因素,例如受影响人群获得护理的机会、是否存在影响免疫系统的潜在病症,或病毒的进化枝。 o 迄今为止,已描述了两种 MPXV 病毒株:进化枝 I 自 20 世纪 70 年代在中非描述,进化枝 II 存在于西非 4,5,6。虽然这两个进化枝引起的疾病非常相似,但进化枝 I 的感染更容易影响儿童,而且通常更为严重。 2022 年疫情期间分离的病毒属于 IIb 分支,主要影响男男性行为者 (MSM)。 Ib 分支于 2023 年 9 月出现在刚果民主共和国 (DRC) 东部地区,目前已在此扎根并蔓延至邻国。 o 迄今为止,鉴于其最近才出现,关于 Ib 分支的特性仍然存在不确定性,无论是在传染性、严重程度还是受威胁人群方面。虽然感染病例涵盖所有年龄组,但初步数据显示,Ib 型感染发生在
背景 2022 年 5 月,世界卫生组织报告称,非洲以外的非流行国家爆发了迅速蔓延的猴痘感染疫情。猴痘是一种罕见的人畜共患病,在非洲部分地区流行,由与天花相关的正痘病毒引起,并通过受感染的哺乳动物传播,包括松鼠、睡鼠和猴子。2003 年,美国爆发的疫情与从非洲进口的宠物草原犬鼠有关。人与人之间的传播可以通过接触受感染的体液、皮肤病变、呼吸道飞沫或通过受污染的物体发生。在目前的疫情中,最大的风险因素是与男性发生性关系的男性在性活动中接触皮肤病变后感染猴痘。美国第一例病例于 2022 年 5 月 18 日报告,患者是一名从加拿大返回的患者。截至 2022 年 8 月 8 日,美国已确诊 7000 多例病例,几乎所有州都报告了至少一例病例。 8 月 4 日,白宫宣布猴痘为国家公共卫生紧急事件。猴痘通常在感染后 5-21 天出现发烧、头痛、淋巴结肿大、背痛、肌痛和/或乏力等前驱症状。此阶段之后很快会出现弥漫性皮疹,病变从斑疹发展为丘疹、水疱、脓疱,通常出现在脐部,然后结痂并消退。此阶段可持续 2-4 周。手和脚底会出现病变。可在 CDC 猴痘信息网站上找到特征性病变的图片和详细的感染时间表。尽管缺乏猴痘的数据,但人们认为免疫功能低下的患者的结果可能会更糟。免疫功能低下与天花或接种具有复制能力的天花疫苗后的严重并发症有关。患者在出现皮疹时具有传染性,直到所有病变脱落并形成新皮肤。任何出现特征性皮疹(包括非典型生殖器病变)的患者都应怀疑患有猴痘。请参阅此处的 CDC 病例定义。以下信息旨在为 VHA 临床医生提供有关使用和获取猴痘专用产品的指导。最近的更新以紫色显示,以便快速识别变化。10 月 1 日更新:VHA 已分配少量 tecovirimat 用于内部分发。此更新中包含有关如何订购和使用 VA 分配的说明
疫苗接种一般信息 MMR 麻疹、腮腺炎、风疹疫苗通常在儿童上小学前接种。有些学生可能还会接种加强针。 Tdap 此免疫接种是破伤风、白喉和百日咳的加强针。通常每 10 年接种一次,初中期间是必需的。如果只接种了破伤风/白喉 (TD) 部分的加强针,则需要重复接种,以便学生免受百日咳(俗称百日咳)的侵害。 乙型肝炎 乙型肝炎是一种严重的疾病,通过接触感染者的血液和体液传播。乙型肝炎疫苗接种需要注射三次。在临床治疗之前,必须至少开始注射该系列疫苗。每次额外的免疫接种也必须按时进行。医疗机构可自行决定以滴度(血液测试)代替疫苗接种证明。 水痘 水痘俗称水痘。 2006 年之前仅进行 1 次免疫接种,但现在的指导方针要求进行 2 次免疫接种。感染过水痘病毒的学生需要进行血液滴度检测以确认免疫力。首次开始接种该系列疫苗的学生还需要按时接种第二次疫苗。结核病 (TB) 皮肤试验,也称为 PPD 结核病是由结核杆菌感染引起的疾病。结核病皮肤试验是在前臂皮肤下注射少量化学物质。该测试将确定学生是否接触过活动性结核病患者。测试后 48 至 72 小时,学生必须让负责管理测试的机构检查该区域。如果没有反应,则测试结果为阴性。该测试必须在开始 CNA 计划之前的夏天完成,并且需要进行两次,每次测试之间间隔 1 - 3 周。每次测试需要两次就诊,一次是进行测试,另一次是在 2 或 3 天后读取结果。如果前臂出现反应(肿块、发红、瘙痒等),则测试结果为阳性。这并不一定意味着该人患有结核病或被感染。但是,这确实意味着学生应该去看医生以确定测试结果的原因。通常会安排胸部 X 光检查以确定肺部是否有结核病的迹象。流感通常称为流感疫苗,这种免疫接种将在下一个流感季节期间提供对大多数流感病毒株的保护。由于流感病毒株每年冬季都会有所不同,因此需要在秋季每年重复接种。疫苗接种应通过您的私人医生或县卫生局提供。有关诊所位置和营业时间的信息,请访问 www.slcohealth.org。费用会有所不同,但如果学生没有保险,可能会有折扣价。
目的:通过为接触风险较高的个体接种 JYNNEOS(天花和 MPOX 疫苗,活的,非复制型)疫苗或作为接触前和接触后预防的一部分,降低正痘病毒 (Mpox、天花) 的发病率和死亡率。政策:除了批准的标准皮下注射方案外,2022 年 8 月 9 日,FDA 还授予紧急使用授权,授权使用 JYNNEOS 皮内注射作为皮下注射途径的替代方案,以及对 18 岁以下人群进行皮下注射。截至 22 年 8 月 29 日,北卡罗来纳州卫生和公众服务部根据 CDC 的指导,要求所有提供者对所有成年接种者进行 JYNNEOS 皮内注射,除非客户对皮内注射途径有医学禁忌症。皮内注射的唯一禁忌症是存在瘢痕疙瘩病史或瘢痕疙瘩。如果确实存在这种禁忌症,则进行皮下注射。22 年 9 月 28 日,CDC 发布了对成人和幼儿皮内注射 JYNNEOS 的最新指南,因此需要修改此常规订单模板。22 年 10 月 12 日,NC DHHS 与 CDC 协调扩大了 JYNNEOS 的暴露前疫苗接种资格标准。22 年 10 月 21 日,CDC 修改了对提供者的建议:寻求管辖卫生部门的咨询,为 18 岁以下儿童至 6 个月以下儿童注射 JYNNEOS。22 年 12 月 9 日,NC DHHS 撤销了之前对所有成人接种者皮内注射 JYNNEOS 的请求,除非客户对皮内注射途径有医学禁忌症。做出这一决定是考虑到发病率下降、全州疫苗供应充足以及减少所有护理障碍,符合 CDC 指导。自 2022 年 12 月 9 日起,公共卫生管辖区和医疗保健提供者应在平衡最佳疫苗接种使用和接受度、接种可行性和可用疫苗供应的基础上,决定是否提供皮内或皮下注射方案。此外,为响应世卫组织和疾病预防控制中心关于将猴痘称为“mpox”以减少与该病毒相关的任何耻辱感的要求,北卡罗来纳州卫生和公众服务部已修改此常规命令模板,将猴痘称为“mpox”根据这些常规命令,合格的护士和其他在其执业范围内工作的医疗保健专业人员可以为符合以下标准的患者接种疫苗。注意:产品配方没有变化。剂量因个人年龄和疫苗接种途径而异。小瓶不含防腐剂。未使用的疫苗仍需在首次使用后 8 小时丢弃。仍需要第二剂才能完全免疫。请查看(替代方案):疫苗接种医疗保健提供者情况说明书:JYNNEOS(天花和 mpox 疫苗,活疫苗,在执行此常规命令之前,您必须先阅读用于预防被确定为感染天花风险较高的个人的天花疾病的 JYNNEOS(天花和天花疫苗,活的,非复制型)悬浮液的包装说明书,以供皮下注射(标准方案)。
1. Valeri M、Durrani S、Tran C 等人。ATAGI 2023 年度免疫声明。传染病情报 (2018) 2023;47。2. 非洲疾病预防控制中心。非洲疾病预防控制中心宣布 Mpox 为大陆安全公共卫生紧急事件,调动整个大陆的资源。2024 年 8 月 13 日。3. 世界卫生组织。世卫组织总干事宣布 mpox 疫情为国际关注的公共卫生紧急事件。2024 年 8 月 13 日。4. Bertran M、Andrews N、Davison C 等人。使用病例覆盖法评估一剂 MVA-BN 天花疫苗在英格兰对抗 mpox 的有效性:一项观察性研究。柳叶刀传染病 2023;23:828-35。5. Brousseau N、Carazo S、Febriani Y 等人。加拿大魁北克省 mpox 疫苗单剂有效性:有/无自我报告暴露风险调整的检测阴性设计。临床传染病 2024;78:461-9。6. Deputy NP、Deckert J、Chard AN 等人。JYNNEOS 疫苗在美国对抗 mpox 疾病的有效性。新英格兰医学杂志 2023;388:2434-43。7. Payne A、Ray L、Cole M。与未接种疫苗的人相比,接种 1 或 2 剂 JYNNEOS 疫苗后 mpox 风险降低——43 个美国司法管辖区,2022 年 7 月 31 日至 10 月 1 日。MMWR 发病率和死亡率周报 2022;71:1560-4。8. Ramchandani MS、Berzkalns A、Cannon CA 等人。改良安卡拉痘苗对男男性行为者预防 Mpox 的有效性:一项回顾性队列分析,华盛顿州西雅图。开放论坛传染病 2023;10。9. Dalton AF、Diallo AO、Chard AN 等人。JYNNEOS 疫苗在预防 mpox 方面的估计有效性:一项跨司法管辖区病例对照研究——美国,2022 年 8 月 19 日至 2023 年 3 月 31 日。MMWR 发病率和死亡率周报 2023;72:553-8。10. Ladhani S、Dowell A、Jones S 等人。对儿童接种单剂改良安卡拉痘苗-巴伐利亚北欧疫苗预防 mpox 后的安全性、反应原性和免疫反应的早期评估:全国性疫情应对。柳叶刀传染病 2023;23。 11. 美国食品药品管理局。JYNNEOS – 完整处方信息包装说明书。2018。12. Kottkamp AC、Oom A、Wilson KK 等人。1495. 2022 年纽约市 Mpox 疫情期间 HIV 感染者 (PLWH) 的 Mpox 疫苗免疫力。开放论坛传染病 2023;10。13. Oom AL、Kottkamp AC、Wilson KK 等人。两剂 MVA-BN Mpox 疫苗诱导的 MPXV 特异性抗体的持久性和亲和力。medRxiv 2024:2024.01.28.24301893。14. Priyamvada L、Carson WC、Ortega E 等人。刚果民主共和国一组参与者对基于 MVA 的 JYNNEOS 猴痘疫苗的血清学反应。疫苗 2022;40:7321-7。15. Berry MT、Khan SR、Schlub TE 等人。预测 mpox 疫苗有效性。自然通讯 2024;15:3856。16. Allard R、Leclerc P、Bergeron G、Cadieux G。mpox 的突破性病例:单剂疫苗接种与较轻的临床表现有关。《感染与公共卫生杂志》2024;17:676-80。17. Hazra A、Zucker J、Bell E 等人。既往感染或完成疫苗接种疗程的人中的 Mpox:全球病例系列。《柳叶刀传染病》2024;24:57-64。18. Faherty EAG、Holly T、Ogale YP 等人。现场笔记:出现主要影响既往接种过 mpox 疫苗的人的 mpox 群集 - 伊利诺伊州芝加哥,2023 年 3 月 18 日至 6 月 12 日。《美国移植杂志》2023;23:1268-70。 19. Guagliardo S、Kracalik I、Carter R。接种 2 剂 JYNNEOS 疫苗后感染猴痘病毒的情况 ç 美国,2022 年 5 月 - 2024 年 5 月。MMWR 发病率和死亡率周报 2024;73:460-6。20. Ilchmann H、Samy N、Reichhardt D 等人。接种一剂和两剂改良的安卡拉-巴伐利亚北欧痘苗可诱导持久的 B 细胞记忆反应,与复制性天花疫苗相当。传染病杂志 2023;227:1203-13。
nlm提供了对科学文献的访问,而无需暗示与内容的认可或一致。分类法涉及根据特征对微生物进行分类,细菌通过革兰氏染色反应分为两个主要组,并表现出各种形状和大小。在临床实践中,细菌是通过形态学,氧的需求和生化测试对细菌进行分类的。基因探针和基于PCR的技术等诊断测试系统检测特定细菌。细菌物种通常根据基因重组频率表现出不同的种群结构。键入分离株对于流行病学研究和监视至关重要。微生物可以分为七个大型生物群:藻类,原生动物,粘液霉菌,真菌,细菌,古细菌和病毒。藻类,原生动物,粘液霉菌和真菌是真核微生物,具有类似于动植物的细胞结构。细菌,包括支原体,立克群和衣原体组,具有原核组织。古细菌是一群独特的原核生物,与其他生物没有密切的祖先关系。只有细菌和病毒在医学或兽医上被认为是重要的。病毒是具有简单结构和不同繁殖模式的最小传染剂。病毒,无蛋白质的RNA片段,引起植物的疾病,而prion是动物和人类致命神经退行性疾病的病因。传染性同工型中发生构成变化(第60章)。系统学也称为系统发育学。分类法包括三个组成部分:分类,命名和识别。分类以有序的方式群体群体,而命名法则涉及命名这些生物,要求国际协议以持续使用。命名法的更改可能会引起混乱,并受到国际商定的规则。在临床实践中,微生物学家主要专注于根据商定的分类系统识别分离株。这些组成部分以及分类法构成了与进化,遗传学和物种有关的系统学的总体学科。原生动物,真菌和蠕虫是根据卡尔·冯·林纳(Carl vonLinné)开创性工作后的标准规则分类和命名的。大类(阶级,秩序,家庭)进一步分为由拉丁二项式指定的单个物种。细菌表现出比所有其他细胞寿命的多样性更大,这使刚性分类具有挑战性。识别主要是通过基于密钥的系统来实现的,该系统基于生化性能测试系统的生长或活动来组织细菌性状。有些测试明确鉴定了属或物种,例如葡萄球菌属的过氧化氢酶产生。和细胞色素c由铜绿假单胞菌C。其他特征可能是单个物种独有的,将它们与具有相似生化谱的人区分开来。某些细菌在实验室中不生长(麻风细菌,treponemes),需要遗传学方法鉴定。如图它们可能构成一个属。随着遗传分析技术变得越来越容易获得,它们和其他快速分析方法正在取代传统的生化方法以识别。细菌分类中使用的分类等级包括王国(原核),分区(Gracilicutes),阶级(Betaproteobacteria),订单(Burkholderiales),家庭(Burkholderiaceae),属(Burkholderia)(Burkholderia)和物种(Burkholderia cepacacia)。通过DNA同源性分析将一些属(例如动杆菌)细分为基因组物种。细菌和病毒的分类构成了挑战,这是由于表型测试在区分某些基因组物种时的局限性。当前方法识别物种复合物,这些物种复合物使用多重分类学方法分为基因组群。例如,头囊菌络合物包括从植物病原体到人类病原体的各种生物。尽管没有普遍接受的分类系统,但Bergey的手册被广泛用作权威来源。国际系统细菌学委员会控制细菌命名法,并在《国际系统和进化微生物学杂志》中发布批准的细菌名称清单。病毒由国际病毒分类学委员会(ICTV)归类,并在病毒学档案中发表。在细菌分类中,主要组以基本特征(例如细胞形状,革兰氏染色反应和孢子形成)区分。属和物种通常通过发酵反应,营养需求和致病性等性质进行区分。不同字符的相对重要性通常是任意的,而Adansonian系统则使用考虑广泛字符的统计系数来确定菌株之间的关系程度。此方法可用于分类共享主要字符的较大分组中的菌株。通过评分多个表型特征,可以估计相似性或匹配系数,这些系数可以在计算机上计算以确定生物体之间相似性的程度。3.1,可以使用相似性矩阵或树状图来构建层次分类树。这种方法允许根据相似性水平(用虚线x和y表示)将生物体分离为属和物种。DNA中鸟嘌呤 - 胞嘧啶(G-C)碱基对之间的氢键强度大于腺嘌呤 - 胸腺胺(A-T)碱基对之间的强度,从而影响DNA熔化的温度。DNA序列以确定G+C含量,该含量在细菌属之间差异很大,但在物种中仍然相对一致。另一种分类方法涉及基于其DNA碱基序列的同源性进行分组。此方法利用了在受控冷却过程中的重新形态,并在互补区域之间产生混合配对。可以通过信使RNA(mRNA)结合研究获得有关相关性的遗传证据。尽管具有不同G+C比的生物不太可能显示出明显的DNA同源性,但具有相似或相同的G+C比的生物可能不一定具有同源性。系统发育相关性。已经开发了一种实时PCR方法来估计G+C含量。核糖体RNA(rRNA)的结构似乎在进化过程中是保守的,反映了系统发育关系。核苷酸测序相对简单,并导致了许多在线医学上重要的细菌物种的DNA序列的可用性。注意:我应用了“添加拼写错误(SE)”方法,其中有10%的概率引入错误。如果您要我以不同的方式重塑它,请让我知道!在此处给定文章的分枝杆菌物种鉴定对于理解其系统发育关系至关重要。尽管rDNA序列中的高相似性(> 97%),但可以使用Microseq(Applied Biosystems)等商业系统来区分不同的物种。但是,核糖体基因可能无法提供足够的变化来区分紧密相关的物种。替代候选基因(例如RECA)已被探索,并且似乎有望用于系统发育分析。在系统发育研究中也使用了其他家政基因,包括RPOB,GROEL和GYRB。这些基因定义了与RRNA基因观察到的基因一致的进化树。分类法的主要目标是促进在临床和公共卫生环境中的个人和团体的有效管理。然而,由于基因组序列数据揭示了微生物之间的相互关系,因此对与基本理解保持一致性是必要的。表3.1根据共享特征概述了简化的分类方案。门A(属)是正确的。这些群体已与最近确定的系统发育命名法对服。可以通过补充测试,有时在物种水平上进一步识别生物。形态标准足以鉴定原生动物,蠕虫和真菌。The classification of cellular micro-organisms is as follows: Eukaryotes: Protozoa - Sporozoa Plasmodium, Isospora, Toxoplasma, Cryptosporidium Flagellates Giardia, Trichomonas, Trypanosoma, Leishmania Amoebae Entamoeba, Naegleria, Acanthamoeba Other: Babesia, Balantidium Fungi: Mould-like Epidermophyton, Trichophyton, Microsporum, Aspergillus Yeast-like Candida Dimorphic Histoplasma, Blastomyces, Coccidioides True yeast: Cryptococcus Prokaryotes: Bacteria: Actinobacteria (High G+C Gram positives) - Actinomyces, Streptomyces, Corynebacterium, Nocardia,分枝杆菌,微球菌(低g-c gram阳性) - 李斯特菌,芽孢杆菌,梭状芽孢杆菌*,乳酸杆菌*,Eubacterium*革兰氏阳性杆菌,杆菌,芽孢杆菌,芽孢杆菌* Enterococcus Gram-negative cocci: Veillonella*, Mycoplasma Proteobacteria (a very large group with 5 sub-divisions) - Neisseria, Moraxella Gram-negative bacilli: Enterobacteria – Escherichia, Klebsiella, Proteus, Salmonella, Shigella, Yersinia Pseudomonads – Pseudomonas, Burkholderia, Stenotrophomonas Haemophilus, Bordetella, Brucella, Pasteurella Rickettsia, Coxiella Gram-negative curved and spiral bacilli: Vibrio, Spirillum, Campylobacter, Helicobacter Bacteroidetes - Bacteroides*, Prevotella* Borrelia, Treponema, Brachyspira, Leptospira衣原体衣原体这些单细胞生物是非斑型生物的,具有独特的核和细胞质。它们的大小从直径2-100 µm变化,其表面膜的复杂性和刚度有所不同。有些物种在内部捕获食物颗粒,而另一些物种则以细菌为食。原生动物被认为是最低的动物生命形式,它通过二元裂变或多重裂变无性繁殖。某些鞭毛原生动物与光合藻类密切相关。最重要的医学原生动物组包括Sporozoa,Amoebae和鞭毛。这些生物具有相对刚性的细胞壁,可能是腐生的或寄生的。霉菌随着分支丝的生长而生长,称为菌丝,形成了称为菌丝体的网状作品。通过形成从营养或空中菌丝体发展的性和无性孢子来繁殖。酵母是卵形细胞,通过萌芽并形成性孢子无性繁殖。二态真菌在人造培养中产生营养菌丝体,但在感染病变中类似酵母。主要的细菌组通过微观观察到其形态和染色反应来区分。革兰氏阴性程序将细菌分为两个伟大的分区:革兰氏阳性和革兰氏阴性细菌。然而,较旧的分类系统与较新的基于DNA序列的系统发育分类之间的关系是复杂的且仍在发展的。随着细菌组之间的系统发育关系开始解体,出现异常。文本描述了根据其形态学特征和染色反应对细菌和病毒进行分类的各种组。尽管如此,在临床实验室中采用的实际鉴定方案很大程度上取决于细菌的形状革兰氏阳性还是阴性,杆菌或球菌的形状,以及它们在有氧或厌氧上生长的能力。医学上有意义的细菌的主要系统发育组包括静脉细菌,其革兰氏阳性具有较高的G+C含量,具有丝状生长和菌丝体的产生; Firmicutes,一组低的G+C革兰氏阳性细菌,其中包括细菌,球菌和孢子形成器;蛋白质细菌,一大群革兰氏阴性细菌;细菌植物,革兰氏阴性厌食症;螺旋体,其特征是带有内部鞭毛的螺旋形细胞;衣原体,严格的细胞内寄生虫产生抗生素并具有非常重要的病原体。其他值得注意的组包括放线菌,链霉菌,分枝杆菌,诺卡氏菌,corynebacterium,链球菌,葡萄球菌,分枝杆菌,尿不质质,叶绿体,veillonella,veillonella,veillonella,gram阳性孢子形成的孢子形成杆菌和近亲,可能会变成gram- cortridium-new cortridiul cortridur cortriver cortridge cortridge cortridg corlam-infram-negam-inform-Gram-ne Gram-ne Gramne。例如,梭状芽胞杆菌的末端孢子具有独特的球形形状。革兰氏阳性的非孢子芽孢杆菌,包括甲ip骨和乳杆菌,倾向于在链或细丝中生长。相反,一些细菌具有使运动能力的鞭毛,例如李斯特菌。细菌可以根据其细胞壁组成,包括α-肾上腺细菌(包括人力赛组和布鲁氏菌),以及贝贝氏菌,包括静脉和伯克霍尔德里亚。尽管具有优势,但核酸测定并非没有局限性。此外,gamaproteobacteria包括大肠杆菌等肠杆菌,以及假单胞菌和军团菌。一些细菌的独特特性(例如弯曲的颤音,包括弧形霍乱)是值得注意的。divaproteobacteria群体在医学上并不显着,而Epsilonproteobacteria包括螺旋杆菌和弯曲杆菌,它们表现出螺旋形状。革兰氏阴性的非腐蚀性厌氧菌(如杆菌和prevotella)以其细长的柔性螺旋而区别。病毒,重点是它们对宿主细胞复制的依赖。某些病毒可能会包裹在脂蛋白中,而另一些病毒缺乏该外层。提出了一个分类系统,根据其遗传物质和衣壳结构对病毒进行分组。引起人类疾病的主要病毒类型包括RNA病毒,例如流感,paramyxoviruse和Flaviviviruses,以及picornaviruses和paciviruses。许多类型的病毒,包括艾滋病毒,HTLV和疱疹病毒会导致人类疾病。DNA病毒,例如痘病毒,轮状病毒和腺病毒,也感染了人。微生物学家在识别细菌时由于精确识别所需的耗时过程而面临挑战。通常,它们依赖于显微镜和培养物等简单方法,可以通过其他测试进行推定识别来支持。但是,这些方法通常至少需要24小时,因此在开始识别之前必须获得单个分离株的纯培养。与文化方法不同,非文化检测技术(例如抗原或基于核酸的检测)没有需要纯培养的缺点,但可能具有特异性的局限性。形态和染色反应可以作为将未知物种置于其适当的生物群中的初步标准。诸如革兰氏阴性,深色地面照明和阴性染色之类的技术可用于观察细菌形态,运动性和胶囊形成。在某些情况下,病理标本中某些生物体的微观特征可能足以进行假定的鉴定,例如痰液中的结节芽孢杆菌或渗出液中的T. pallidum T. pallidum。但是,许多细菌具有相似的形态特征,需要进一步测试以区分它们。固体培养基上殖民增长的出现还可以提供特征信息,包括菌落大小,形状,高程和透明度。微生物生长和特征的变化,包括透明度,不透明和颜色,可能会显着影响结果。生长所需的条件范围特定于某些生物,有些需要氧气,其他厌氧环境,而另一些则对二氧化碳水平或pH值敏感。为了区分相似的物种,可以采用评估代谢差异的测试,例如产生特定碳水化合物的酸性和气态终产物的能力。但是,现在许多实验室都使用了结合简单性和准确性的市售微磨合。此过程导致可见细菌生长的抑制作用。Some common tests used in identification include: - Production of indole or hydrogen sulphide - Presence of oxidase, catalase, urease, gelatinase, or lecithinase enzyme activities - Utilization of various carbon sources Traditionally, these tests have been performed individually according to standard guidelines.套件也可用于特定的生物组,例如肠杆菌和厌氧菌。在某些情况下,可以使用更先进的程序来分析代谢产物或全细胞脂肪酸。A fully automated system using high-resolution gas chromatography and pattern recognition software is widely used, allowing for the rapid identification of various bacterial species.Mass spectrometry also holds promise for rapid identification through matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry.由于细菌的多样性和复杂性,对细菌的检测和鉴定可能具有挑战性。Many organisms may not grow in culture, or they may require specialized nutrients, making traditional methods time-consuming and labor-intensive.然而,核酸技术的进步彻底改变了该领域,提供了更灵敏和快速的检测方法。Commercially available systems, including PCR, transcription-mediated amplification, and hybridization with specific probes, can identify a wide range of bacterial species with high accuracy.These technologies enable the detection of multiple species simultaneously, making them ideal for epidemiological investigations and antimicrobial susceptibility testing.此方法允许进行定量和形态评估。污染,操作员技能,底漆设计以及标本中抑制性化合物的存在都会影响结果。对这些结果的解释需要仔细考虑生物体的自然栖息地和共生主义的潜力。The development of new technologies, such as peptide nucleic acid (PNA) assays, holds promise for even more rapid and sensitive detection methods.These techniques use PNA molecules with DNA binding capacity to detect and identify bacterial species on microscope slides, and can be amplified using PCR to accelerate testing times.也已经开发出高密度寡核苷酸阵列,从而可以同时分析数千种不同的探针。This enables researchers to quickly identify specific genetic markers associated with antimicrobial resistance, paving the way for more targeted treatment strategies.Recent advancements include DNA sequencing, strain genotyping, and identifying gene functions, as well as locating resistance genes and changes in mRNA expression.一种创新的方法涉及在Eppendorf管中开发的选定基因靶标的阵列。The chip embedded in the tube contains optimized sets of oligonucleotide probes specific to certain organisms or antimicrobial resistance genes.这允许自定义单个细菌或组的芯片。从样品制备到检测的测定过程在单个管中在6-8小时内完成。实时PCR已广泛开发,使用荧光在单个反应管中结合了扩增和检测。该系统比常规PCR具有显着优势,包括速度,简单性和减少手动程序。基于荧光的方法可以检测DNA产物或通过与荧光标记的探针杂交提高特异性。对靶DNA的定量也是可能的,可以估计样品中的病毒或细菌数。 此外,针对16S核糖体RNA的荧光原位杂交(FISH)已用于直接在临床标本中检测细菌,而无需培养。 可以通过血清学反应来鉴定微生物的种类和类型,这些反应依赖于特有的特定物种或类型的抗体或类型的抗体,这些抗体以特征性的方式与微生物反应。 抗体在检测细菌产生的毒素和抗原以及鉴定特定病毒方面起着至关重要的作用。 基于乳胶的试剂盒广泛用于血清学组和毒素检测。 在ELISA中,特异性抗体附着在塑料孔上,并添加了测试抗原。 通过添加更特异性的抗体检测到抗原的存在,并用启动颜色反应的酶标记。 ELISA方法可以反向使用以定量检测抗体。 在Mac-Elisa中,纯化的抗原被吸附到井中,并添加了测试血清。 任何IgM与捕获试剂结合,并添加纯化的抗原以用标记的抗体检测。 某些病毒,例如流感,在红细胞上充当桥梁的受体,形成可见的团块。 但是,这种方法缺乏可重复性。对靶DNA的定量也是可能的,可以估计样品中的病毒或细菌数。此外,针对16S核糖体RNA的荧光原位杂交(FISH)已用于直接在临床标本中检测细菌,而无需培养。可以通过血清学反应来鉴定微生物的种类和类型,这些反应依赖于特有的特定物种或类型的抗体或类型的抗体,这些抗体以特征性的方式与微生物反应。抗体在检测细菌产生的毒素和抗原以及鉴定特定病毒方面起着至关重要的作用。基于乳胶的试剂盒广泛用于血清学组和毒素检测。在ELISA中,特异性抗体附着在塑料孔上,并添加了测试抗原。通过添加更特异性的抗体检测到抗原的存在,并用启动颜色反应的酶标记。ELISA方法可以反向使用以定量检测抗体。在Mac-Elisa中,纯化的抗原被吸附到井中,并添加了测试血清。任何IgM与捕获试剂结合,并添加纯化的抗原以用标记的抗体检测。某些病毒,例如流感,在红细胞上充当桥梁的受体,形成可见的团块。但是,这种方法缺乏可重复性。Haemagglutinins can be detected in tissue culture, and red cells can be coated with specific antibodies to agglutinate in the presence of homologous virus particles.荧光染料可用于染色组织或生物体,从而在紫外线下可视化。Antibody molecules can be labeled with fluorochrome dyes, enabling direct immunofluorescence procedures for highly sensitive antigen identification.该技术将抗体技术与PCR方法相结合,以增强抗原检测能力。分子生物学中的一种新方法涉及将DNA分子与抗原抗体复合物联系起来,从而产生特定的结合物。此附件允许通过PCR扩增,验证抗原的存在。免疫-PCR的增强灵敏度超过ELISA的105倍,因此检测到只有580个抗原分子。细菌种群表现出不同的结构,从高度多样化到非常相似。Recombination frequency is the primary determinant of population structure, with some species experiencing high recombination rates and others exhibiting rare recombination events.Species such as Neisseria gonorrhoeae are naturally transformable, displaying high recombination frequencies, while Salmonella enterica populations exhibit low recombination rates.细菌克隆可能显示出瞬态或持久特征。Panmictic与克隆人群的概念突出了这两种类型之间的繁殖,重组,等位基因排列和选择性压力的差异。In each family lie many genera of each type.键入分离株可以与参考标记,识别细菌物种中的菌株和分离株进行比较。区分类似菌株的能力在追踪社区或医院环境中感染的来源或传播方面具有重要意义。已经开发了各种键入方法来帮助这一过程,这可能涉及从相同起源菌株之间识别较小的差异。尽管单个打字方法可以证明相同的响应,但这不是两种菌株相同的结论性证据。但是,使用多种打字方法大大提高了相似性的置信度。键入技术可以在不同的流行病学水平上应用,包括微流行病学,宏观流行病学和种群结构分析。从键入中得出的数据可以通过识别共同或点源,区分混合应变感染以及识别再感染与复发与复发来帮助控制感染。一些方法还有助于识别与疾病相关的特定类型,例如大肠杆菌O157和溶血性尿毒症综合征。为了使方法被认为是可靠的,必须在实验室环境和临床上可以重现。在流行病学研究的背景下,首选多种键入方法,因为它们可以针对不同的特征。这些包括生物化学测试,这些测试定义了物种内的生物型,抗性分型检测对化学物质敏感性的变化以及基于营养需求的生长需求的辅助分型。可以使用此方法分析质粒和染色体DNA。此外,许多细菌的表面结构都是抗原性的,可以使用针对它们提出的抗体将分离株分为定义的血清型。物种可以根据其独特特征分为几种抗原类型。对于某些物种,血清分型是一种识别和区分不同菌株的高效方法。在其他情况下,抗原表位的保存使血清型对流行病学目的的有用程度降低。例如,沙门氏菌的物种可以通过其体细胞和鞭毛血清型来定义。研究表明,囊抗原可能在某些生物的致病性中起作用,许多疫苗通过刺激对这些抗原的抗体来起作用。噬菌体键入是一种用于识别和区分细菌菌株的方法。这涉及使用特定噬菌体的凝集或降水反应,如果适当地适应,这可能具有很高的歧视性。但是,某些噬菌体集缺乏稳定性会导致广泛的噬菌体组,而不是定义的类型。此外,控制噬菌体分型结果解释的关键因素是歧视和可重复性。噬菌体与细菌之间的相互作用是一个复杂的过程,涉及吸附,DNA注射以及裂解或复制。裂解或有毒的噬菌体可以在复制循环结束时裂解宿主细胞,从而释放可能感染相邻细胞的新噬菌体颗粒。但是,其有效性取决于噬菌体的适应和系统的稳定性。噬菌体键入已用于包括微生物学和流行病学在内的各个领域,以识别和跟踪细菌菌株。尽管存在这些局限性,但噬菌体打字仍然是理解不同细菌菌株及其特性之间关系的重要工具。只有在两个强烈的裂解反应表现出两种不同的菌株时,才能识别出两种不同的菌株。细菌素是大多数细菌物种产生的自然存在的抗菌物质,主要靶向与生产菌株同一属内的菌株。通过分析产生的细菌素的光谱或对标准面板细菌素的敏感性,细菌素键入可以定义不同类型的细菌。蛋白质组学分析,涉及具有强洗涤剂的丙烯酰胺凝胶中的凝胶电泳,也可以通过可视化数千种蛋白质并比较分离物之间的带模式来鉴定细菌物种。另外,研究人员已使用凝胶电泳来分析代谢酶,可以使用特定底物检测到该酶,用于物种内的克隆分析。限制性核酸内切酶是在特定序列识别位点切下DNA的酶。这些切割的频率取决于寡核苷酸序列,限制位点的频率以及所检查的物种的G+C含量的百分比。频繁切割的核酸内切酶产生许多小片段,可以通过琼脂糖凝胶中的常规电泳解决,并通过用染料染色检测。通过引入脉冲或在电场方向上变化,可以分开碎片至10 MB。相比之下,不经常的切割酶产生的大型DNA片段需要脉冲场凝胶电泳(PFGE)进行分离。该技术涉及将细菌包裹在琼脂糖塞中,用蛋白酶K酶消化细胞,然后用酶消化DNA。CORTOUR夹具均匀的电场(Chef)设备通常用于PFGE,并具有在六角形阵列中排列的24个电极。运行时间通常在30到40小时范围内,尽管已经描述了较短的协议。几个因素影响了这些分析的结果,包括正在检查的DNA类型,酶和反应条件的选择以及所使用的设备质量。DNA样品的质量和浓度,琼脂糖凝胶电压和脉冲时间,缓冲液强度和温度会影响脉冲场凝胶电泳(PFGE)的结果。虽然解释PFGE曲线可能是由于不同物种之间的带状模式的变化而具有挑战性的,但已通过Tenover确定了特定的标准以确定差异的重要性。通常,与显示剖面无差异的单个事件中的分离物被认为是无法区分的。一到三个频段差异的人密切相关。四到六个乐队可能表明可能的关系;七个或更多的差异表明不同的菌株。但是,该规则应谨慎应用,因为即使在同一克隆的成员之间,某些物种也会表现出显着差异。Pearson系数是另一种常用的方法,具有不需要定义特定带位置的优势。可以使用计算机辅助分析软件包来计算菌株之间相似性的系数,例如jaccard和骰子系数,这些系数使用配置文件中的一致频段来确定百分比相似性。经常使用85%相似性的截止点,但应通过实验相关且无关的应变集设置。DNA探针可以根据克隆的特异性,随机序列或通用序列检测靶DNA中的限制位点异质性。rubotyping检测rDNA基因基因座的变化,并已普遍应用于各种物种。其他常用的探针是可能定义种群克隆结构的插入序列。PCR(聚合酶链反应)是一种允许在受控条件下放大特定DNA序列的技术。可以通过使用PCR的重复放大循环来制作由特定寡核苷酸引物定义的基因组区域的多个副本。该方法已广泛用于DNA指纹和键入,利用DNA分子中的可变区域,例如串联重复区域的可变数量或具有限制性核酸内切酶识别序列的区域。两种方法都有局限性,这是由于错误启动,不同的带强度以及电泳迁移差异引起的可重复性问题。基于重复序列的PCR(REP-PCR)索引在整个基因组中多个重复序列中的变化,而自动化的REP-PCR系统对应变键入显示了有望,并且可以提供与PFGE相似的歧视。狼在can属中,而狐狸则处于喧嚣中。放大的片段长度多态性结合了限制性核酸内切酶消化与PCR,以优化基因组之间单碱基对差异的可重复性和分辨率。该技术使用核苷酸测序来分析管家基因,该基因慢慢多样化,不受选择性的作用。多焦点序列分型(MLST)可以视为确定的基因分型。但是,MLST可能对诸如结核分枝杆菌等高度均匀的物种没有效。为了增加歧视,由于环境变化,毒力相关的基因提供了较高的序列变化,因此已经针对了毒力相关的基因。通过PCR扩增基因间区域,并测序了500 bp的内部片段以识别等位基因多态性。多焦点限制输入引入了放大管家基因的限制消化,从而消除了对测序的需求。可变数字串联重复序(VNTR)是拷贝数变化的短核苷酸序列,可用于快速且可再现的键入。识别其他遗传基因座可以提供进一步的见解,但随着时间的流逝,它们的稳定性仍然存在争议。DNA测序技术的最新进展使得分析整个基因组序列成为可能,从而可以更精确的比较和细菌的键入。这种方法涉及生成可以组装并与先前分离株进行比较的短核苷酸序列读取。与这些高级分析相关的成本与传统方法变得越来越具竞争力。这样的分析可以在同期和历史分离株之间建立进化关系,从而对细菌进化有更明确的理解。此外,这项技术通过提供明确的流行病学信息并确定有助于抗生素耐药性和抗原选择压力来转化医学细菌学的重要潜力。资料来源:Barrow Gi,Feltham RKA,编辑;加里斯总经理,编辑; Kaufmann我; Murray PR,Baron EJ,Jorgensen JH,编辑;欧文·RJ; Schleifer KH; Spratt BG,Feil EJ,Smith NH; Tenover FC,Arbeit Rd,Goering RV; Van Regenmortel MHV,Fauquet CM,Bishop DHL,编辑; Woese Cr。分类类别是称为分类单元的层次组,其中包含一小部分物种,该物种来自一个相对较新的共同祖先。可以在下面可视化整体层次结构以供参考:尽管研究不同生物体的科学家在分类方案中有所不同,但属背后的一般概念是它代表物种祖先相关的物种,并且与其他属不同,不包括不必要的物种。确定这在于每个研究者,但是这些一般指南在属属方面保持分类相当狭窄。属属的分类单元通常包括群体之间可识别的身体形式。例如,Felidae和Canidae分别代表类似猫的生物和类似狗的生物。最后一步,物种定义了在连续单位中共同繁殖的人群和群体。在一起,这些名字告诉您有关生物体的很多信息。在大多数情况下,由于遗传,行为或形态学差异,不同的属将不会繁殖。Carl Linnaeus通过他的生物生物命名计划(二项式命名法)普及了“属”一词,尽管他对属的定义与我们的现代观点有所不同,但在二项式命名法中使用通用epithets在二项式术语中的使用仍在继续。通用称呼是二项式命名法中描述有机体所属属的动物名称的两个单词。第二个单词或特定的称呼描述了有机体所属的生物或物种更紧密相关的群体。通过了解一个人也知道家庭,秩序和所有其他分类分类。由于分层群体是由生物之间的相似性安排的,所以这些关系告诉了我们很多有关单个动物的信息。知道该物种可以告知我们动物与该属中其他动物的独特性。例如,Honey Badger具有科学名称Mellivora Capensis。有时,属可能包含数百种物种,尤其是在鱼类和无脊椎动物中。这种品种具有误导性,因为它应该反映进化。进化多样性决定了属内生物的数量。如果许多物种随着属的传播而出现,将会有许多物种。相反,如果只有一个物种幸存,则只有一个物种。分类分类是一个持续的过程,每天都描述了新的属。一些新发现的生物从未被命名,而另一些有机体则根据DNA分析重新分类。通过分析DNA,比较性状并提出系统发育,科学家假设最可能的进化进展。这将为命名惯例提供信息,并确定哪些物种可以成为独特的属。物种代表属内生殖分离并与其他群体独特的群体。家庭是分层分类中属的分类单元。分类单元是指具有相似特征的群体。两条鱼一起游泳可能不会繁殖,而是具有类似的特征,与其他任何海洋鱼不同。如果它们可以杂交,则将被视为物种。北极熊和棕熊在同一属中是不同的物种,但仍可以成功繁殖。这是因为它们占据了独特的生态位,很少彼此遇到繁殖。生态障碍可以阻止它们自然繁殖,即使它们的后代是可行的。随着气候变化耗尽冰盖,可以将北极熊推向较低的纬度,并可能与棕熊杂交。科学家辩论是否应基于进化连接和物理特征将新物种添加到属中。如果两组共有共同的血统,则它们应属于同一属,即使它们在细胞外基质产生等特征上有所不同。在Fakus细菌的情况下是一种具有相似DNA但缺乏定义该属的独特基质的新物种,分类学家必须权衡多个领域的证据。通过分析解剖学,行为和遗传数据,科学家可以重建生物体之间的关系,并就分类做出明智的决定。