清除死亡细胞或胞吞作用是解决炎症不可或缺的一部分。然而,动脉粥样硬化斑块的炎症微环境经常影响凋亡细胞和驻留吞噬细胞的生物学,导致胞吞作用功能障碍。为了解决这个问题,开发了一种嵌合抗原受体 (CAR) 巨噬细胞,它可以靶向和吞噬表达 CD47 的抗吞噬凋亡细胞。在正常和炎症情况下,CAR 巨噬细胞表现出相当于抗体阻断的活性。CAR 巨噬细胞的表面用针对肝脏 X 受体通路的活性氧 (ROS) 响应性治疗性纳米颗粒进行修饰,以提高其细胞效应活性。CAR 和纳米颗粒工程激活脂质通量泵的结合增强了细胞碎片清除并减少了炎症。进一步表明,未分化的 CAR-M 可以在微制造的血管系统内迁移。研究还表明,我们的 CAR 巨噬细胞可以充当嵌合开关受体 (CSR),以抵抗免疫抑制炎症环境。开发的平台有可能为下一代心血管疾病疗法的进步做出贡献,进一步的研究包括体内实验。
Tingting Fan 1,2Ɨ , Yanhao Cheng 3Ɨ , Yuechao Wu 4,5Ɨ , Shishi Liu 1Ɨ , Xu Tang 1,2Ɨ , Yao He 1 , Shanyue Liao 1 , Xuelian Zheng 1,2 ,Tao Zhang 4,5* , Yiping Qi 3,6* , Yong Zhang 2* 1 Department of Biotechnology, School of Life Sciences and Technology, Center for
摘要。胞外聚合物 (EPS) 是许多远洋和底栖环境中重要的有机碳库。EPS 的产生与植物和微微浮游生物的生长密切相关。EPS 通过结合阳离子并充当矿物质的成核位点,在碳酸盐沉淀中起着关键作用。水柱中大规模细粒碳酸钙沉淀事件(白垩事件)与蓝藻水华有关,包括聚球藻属。引发这些沉淀事件的机制仍存在争议。我们认为,在指数和稳定生长阶段产生的蓝藻 EPS 在白垩的形成中起着关键作用。本研究的目的是研究在模拟水华的 2 个月蓝藻生长过程中 EPS 的产生情况。使用各种技术,如傅里叶变换红外 (FT-IR) 光谱以及比色法和十二烷基硫酸钠 - 聚丙烯酰胺凝胶电泳 (SDS-PAGE) 测定法,研究了聚球藻不同生长阶段 EPS 的产生和特性。我们通过体外强制沉淀实验进一步评估了 EPS 在碳酸盐沉淀中的潜在作用。在早期和晚期稳定期产生的 EPS 所含的负电荷基团比在指数期产生的 EPS 所含的负电荷基团要多。因此,稳定期 EPS 的 Ca 2 + 结合亲和力较高,导致形成大量较小的
理由:尽管基于新抗原的癌症疫苗在各种实体瘤中表现出了希望,但已有有限的免疫反应和晚期疾病患者的临床结局有限。新抗原和佐剂的胞质转运是激活细胞内收费受体(TLR)和交叉表现到新抗原特异性CD8 + T细胞所必需的,但仍然是一个重大挑战。Methods: In this study, we aimed to develop a virus-like silicon vaccine (V-scVLPs) with a unique spike topological structure, capable of efficiently co-delivering a hepatocellular carcinoma (HCC)-specific neoantigen and a TLR9 agonist to dendritic cells (DCs) to induce a robust CD8 + T cell response to prevent orthotopic tumor 生长。我们通过检查动物模型中的肿瘤生长和生存时间,并分析肿瘤微环境(TME)中的肿瘤浸润CD8 + T细胞和细胞因子反应来评估V-SCVLP的抗肿瘤功效。为了评估V-SCVLP与HCC中α-TIM-3结合使用的协同功效,我们使用了原位HCC小鼠模型,肺转移模型和肝切除术后肿瘤的补偿模型。结果:我们发现V-SCVLP可以通过小窝素介导的内吞作用有效地将肝细胞癌(HCC)特异性新抗原和TLR9激动剂共同分配给DCS。这种先进的递送策略导致V-SCVLP的有效淋巴结排干,以激活淋巴样DC成熟,以促进稳健的CD8 + T细胞和中央记忆T细胞反应,从而有效地阻止了原位性HCC肿瘤的生长。然而,在已建立的原位肝肿瘤模型中,用V-SCVLP免疫后,TIM-3的抑制性受体在肿瘤浸润的CD8 + T细胞中显着上调。阻止TIM-3信号进一步恢复了V-SCVLPS诱导的CD8 + T细胞的抗肿瘤活性,降低了调节T细胞的比例,并增加了细胞因子的水平,以改变肿瘤微环境以有效地抑制了Orthotopic HCC肿瘤的生长,并抑制了lung Mentastasis,并抑制了Lung Mentastasis,并抑制了Lung Mentastasiss and He and He and He and Lung Mentastasis。结论:总体而言,具有有效的新抗原和辅助细胞内递送能力的发达的新型Spike纳米颗粒对未来的临床翻译有很大的希望,可以改善HCC免疫疗法。
。cc-by-nc-nd 4.0国际许可证(未获得同行评审证书)获得的是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权所有,该版本发布于2023年7月20日。 https://doi.org/10.1101/2023.07.20.549855 doi:Biorxiv Preprint
。cc-by-nc-nd 4.0国际许可证(未获得同行评审证书)获得的是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权所有,该版本发布于2023年7月20日。 https://doi.org/10.1101/2023.07.20.549855 doi:Biorxiv Preprint
胞嘧啶碱基编辑器 (CBE) 可实现可编程的基因组 C·G 到 T·A 转换突变,通常包含经过修饰的 CRISPR-Cas 酶、天然存在的胞嘧啶脱氨酶和尿嘧啶修复抑制剂。先前的研究表明,利用天然存在的胞嘧啶脱氨酶的 CBE 可能导致无引导的全基因组胞嘧啶脱氨。尽管随后报道了可减少随机全基因组脱靶的改进型 CBE,但这些编辑器的靶向性能可能不理想。本文,我们报告了使用 TadA 的工程变体 (CBE-T) 的 CBE 的生成和表征,这些变体可在序列多样的基因组位点上实现高靶向 C·G 到 T·A,在原代细胞中表现出强大的活性,并且不会导致全基因组突变的可检测升高。此外,我们报道了胞嘧啶和腺嘌呤碱基编辑器 (CABE),它们可催化 A 到 I 和 C 到 U 编辑 (CABE-T)。与 ABE 一起,CBE-T 和 CABE-T 可使用实验室进化的 TadA 变体对所有转换突变进行可编程安装,与之前报道的 CBE 相比,这些变体具有更好的特性。
摘要。本文旨在评估绝热压缩空气存储(ACAE)系统的最佳配置,旨在实现来自不可编程的可再生能源(RES)发电厂和最终用户的电源需求的最佳匹配。一个小镇的电能需求,最大电力负载约为10兆瓦,被认为是案例研究。电能可以由光伏(PV)发电厂和网格提供。对于ACAES系统,已通过改变涡轮机的空气质量流量以及充电和放电时间的时间来评估压缩机,涡轮机,热能储存(TES)系统和空气存储库的不同尺寸,以增强提供给最终用户的PV能量的份额。通过额定约35兆瓦的PV发电厂和一个ACAES部分,其特征是压缩机/涡轮机的额定功率约为最终用户最大功率负载的25-35%,其充电时间约为10个小时,放电时间约为20小时。ACAES系统的平均往返效率约为70%。总体上,集成的PV-ACAES系统允许覆盖每年的电能需求的66%。
胞嘧啶碱基编辑能够在不造成 DNA 双链断裂的情况下安装特定点突变,这对基因治疗等各种应用都有好处,但需要进一步降低脱靶风险并开发有效的递送方法。在这里,我们展示了基于结构的胞嘧啶碱基编辑系统 Target-AID 的合理工程设计,以最大限度地减少其脱靶效应和分子大小。通过密集而仔细的截断,其脱氨酶 PmCDA1 的 DNA 结合域被消除,并引入额外的突变以恢复酶功能。所得的 tCDA1EQ 在与 Cas9 的 N 端融合(AID-2S)或镶嵌结构(AID-3S)中有效,显示出最小化的 RNA 介导的编辑和 gRNA 依赖性/非依赖性的 DNA 脱靶,如在人类细胞中评估的那样。与较小的Cas9直系同源系统(SaCas9)结合,创建在AAV载体大小限制内的胞嘧啶碱基编辑系统。
A3A 和 eA3A 表达。A3A 表达构建体 (Addgene #109231) 之前已有描述,可用于纯化 A3A 作为融合蛋白 (MBP-A3A-His),可进一步加工以生成分离的 A3A 结构域。32,33 对于 eA3A (A3A-N57G),N57G 突变是通过 Q5 定点诱变 (New England Biolabs, NEB) 引入的。A3A 和 eA3A 构建体的细菌表达之前已有详细描述。 33 将纯化的 MBP-A3A-His、MBP-eA3A-His 或分离的 A3A 在 50 mM Tris-Cl(pH 7.5)、50 mM NaCl、10% 甘油、0.5 mM DTT 和 0.01% Tween-20 中透析过夜,并使用 BSA 标准曲线确定蛋白质浓度。基于 SwaI 的脱氨酶对 ssDNA 和嵌合底物的活性。5'-荧光素 (FAM) 荧光标记的底物 S35-dC 或具有单个靶核糖胞嘧啶的匹配底物(在其他 DNA 骨架中)(S35-rC)由 Integrated DNA Technologies (IDT) 合成,以及相关产品对照(S35-dU 和 S35-rU)。在最佳 A3A 反应条件(最终为 20 mM 琥珀酸:NaH 2 PO 4:甘氨酸 (SPG) 缓冲液 pH 5.5,0.1% Tween-20)下,用 6 倍稀释的未标记 A3A(从 1 µM 到 4 pM)处理 100 µM 寡核苷酸。反应在 37 ˚C 下进行 30 分钟,然后终止(95 ˚C,10 分钟)。然后加入 200 nM 互补链并退火。加入 SwaI (NEB),在室温下消化过夜。加入甲酰胺上样缓冲液,样品加热变性(95 ˚C,20 分钟),然后在 50 ˚C 下在 20% 变性 TBE/尿素聚丙烯酰胺凝胶上运行。使用 Typhoon 成像仪(GE Healthcare)上的 FAM 滤光片对凝胶进行成像。使用 ImageJ 中的面积量化工具进行定量分析。720 碱基对 ssDNA 底物的合成。为了生成 ssDNA,使用 720 bp gBlock 基因片段 (IDT) 作为模板 (补充图 2a),并使用 Taq 聚合酶 (NEB) 进行扩增,采用指数后线性 (LATE) PCR 反应方案,该方案采用相对于磷酸化的反向引物过量的正向引物。32 对反应物进行纯化 (NucleoSpin、Fisher),然后在 37 ˚C 下用 核酸外切酶处理 1 小时以降解磷酸化链,然后进行热失活 (90 ˚C,10 分钟)。然后将产物在 2% 琼脂糖凝胶上运行,并使用凝胶 DNA 回收试剂盒 (Zymoclean) 回收 ssDNA。通过乙醇沉淀进一步纯化 ssDNA,并使用 Qubit ® 荧光计 (ThermoFisher) 测量其浓度。对于一个重复,ssDNA 以大分子寡核苷酸 (IDT) 的形式获得,并通过乙醇沉淀进一步纯化。720 聚体 RNA 底物的合成。使用 720 bp 基因块 (IDT) dsDNA 作为模板,在推荐条件下使用 TranscriptAid Enzyme Mix (ThermoFisher) 通过体外转录生成 RNA,并在 37 ˚C 下孵育两小时。然后通过苯酚-氯仿提取和乙醇沉淀纯化 RNA。将样品重新悬浮在无核酸酶的水中,并进一步用 MspI、XbaI 和 AclI 限制性酶 (NEB) 处理以消化任何剩余的 DNA 模板。在 37 ˚C 下孵育 1 小时后,使用 RNA Clean and Concentrator-5 试剂盒 (Zymo Research) 纯化 RNA。为了进一步确保完全去除模板 DNA,在 37 ˚C 下用 DNase I (Ambion) 处理 RNA 30 分钟。重复纯化 (RNA Clean and Concentrator-5),并使用 Qubit ® 荧光计测量纯化 RNA 的浓度。通过“预测二级结构网络”预测 720 聚体中几个中尺度区域的二级结构