1个皮肤病学服务,大学医院中心,法国25,000个贝斯康顿; ahennemann@chu-beson.fr(A.H.); faubin@chu-beson.fr(F.A.)2大学éfranchecom,Inserm 1098右,25020法国贝斯康3,法国3临床中心,大学医院中心,法国25030,法国贝斯坎顿; kdiallo@chu-beson.fr(K.D.)4巴黎 - 萨克莱大学,UVSQ,EA4340-BCCOH,公共援助 - 帕里斯山脉(AP-HP),HôpitalAmbroise-Paré,皮肤病学服务génee rale et concologique,92104 Boulogne-Billancourt,France,France; elisa.funck-brentano@aphp.fr(E.F.-B。); philippe.saiag@uvsq.fr(P.S.)5皮肤病学服务,霍特·罗伯特·巴兰格(Robert Ballanger),法国比利普特(Villepinte)93420; valentine.heidelberger@ght-gpne.fr 6皮特尔·勒波奇(Pital Le Bocage)大学医院中心皮肤病学服务,法国21079,法国第2179号; geraldine.jeudy@chu-dijon.fr 7大学医院中心皮肤病学服务,BIP 1282,Inra-Universitédetours,37020 Tours,法国37020 Tours,法国8皮肤病学服务,大学医院中心,34295法国蒙特佩利尔,法国; candice.lesage@icm.unicancer.fr 9皮肤病学服务,大学医院中心,南特大学,INSERM,免疫学和免疫疗法的新概念,Incit,UMR 1302,44000 Nantes,France 10西方癌症研究所,西方癌症研究所,44800 SAINT-HERBLAIN,法国,法国; melanie.saintjean@ico.unicancer.fr(M.S.-J.)11大学医院中心皮肤病学服务,法国克莱蒙·费兰(Clermont-Ferrand)63003; jrouanet@chu-clermontertferrand.fr 12皮肤病学服务,Pital Bichat AP-HP,巴黎大学Cité大学,法国75018,法国巴黎; poder.brunet-posenti@aphp.fr 13法国波尔多大学医院中心皮肤病学服务; emilie.gerard@chu-bordeaux.fr 14肿瘤学MéDicale,中心医院,法国64046 PAU *通信:cnardin@chu-besancon.fr†这些作者为这项工作做出了同样的贡献。
mm。Bacin Franck-贝格·雷恩(BegueRené-Jean -Jean -Jean -beytout Jean -boire Jean -yves -boiteux jean -paul -paul -paul -bommelaer gilles -bommelaer gilles -boucher daniel -bussiere daniel -bussiere jean- jean-noëlcano- -Clement Gilles -Dastugua Bernard -Dauuplat Jacques -DeChelotte Pierre -DemeocqFrançois -de Riberolles Charles -DeTeix Patrice -Escande Georges -MME Fonck Yvette -M。Gentou Claude -M. Gentou -Mmeme -Mmeglanddier Phyllis -Phyllis -Mmmmmmmmmmmm。Irhum Bernard - Jacquetin Bernard - Kemeny Jean -Louis - Laurichese Henri - Laveran Henri - Lesourd Bruno - Levai Jean -Paul - Lusson Jean -René - Mage Gérard - Michel Jean -Luc - Philippe Pierre - Planche Roger - Ponsonnaille Jean - Mme Rigal Danièle - MME -MME RigalDanièle -MM。Rozan Raymond -Schoeffler Pierre -Sirot Jacques -Ribal Jean -Pierre -Souteyrand Pierre -Tanguy Alain -Tanguy -Terver Sylvain -Terver Sylvain -Thieblot -Thieblot Philippe -Tournilhac Michel -Michellet -Viallet -Viallet -Fiallet Jean-François -François-Verrelle Pierre -Mme veyre veyre veyre veyre veyre
1临床免疫学实验室,炎症和过敏利维亚,医学与药学学院,哈桑二世大学,卡萨布兰卡20250,摩洛哥; drailalfatima@gmail.com(F.A。); jalilaelbakkouri@gmail.com(J.E.B。); khalid.zerouali2000@gmail.com(k.z.); profbousfin@gmail.com(A.A.B。)2细菌学,病毒学和医院卫生实验室,伊本·罗奇大学医院,卡萨布兰卡20250,摩洛哥3,摩洛哥3细菌学和病毒学实验室,医学和药学学院,哈桑二世大学,卡萨布兰卡20250,20250,20250 20250,摩洛哥5免疫学实验室,伊本·罗奇大学医院,卡萨布兰卡20250,摩洛哥6摩洛哥6人类传染病的人遗传学实验室,内克斯特分公司,国立国家基金会,国家de lasanté等人等人,de la recherchemédicale(Inserm),75015 Paris,France,France; vivien.beziat@inserm.fr(V.B.); emmanuelle.jouanguy@inserm.fr(E.J.); casanova@mail.rockefeller.edu(J.-L.C.)7人类传染病遗传学实验室,洛克菲勒分公司,洛克菲勒大学,纽约,纽约,纽约,10065,美国8霍华德·休斯医学研究所,雪佛兰Chase,MD 20815,美国 *通信:
1。科特大学阿祖尔大学,伊特里亚,2004年路线des lucioles bp 93,06902索菲亚·安蒂波利斯·塞德克斯(Sophia antipolis Cedex),法国2。固定州物理研究所,纳维·格拉兹(Nawi Graz),格拉兹技术大学,奥地利格拉兹8010,3。科学与技术系,林克普大学,601 74诺尔科平 *通讯作者:francesco.greco@tugraz.at关键字:临时纹身,可穿戴,可穿戴,可符合的电子学,表皮设备,在各种技术中的表皮领域摘要,以及各种方法。 在这里,临时纹身纸被用作非常规底物来构建可转移的身体符合身体的设备,该设备与皮肤建立了稳定且持久的界面。 基于纹身的设备显示了它们在多个领域的功能,并在人类健康生物监测中进行了主要应用。 这种方法正在推进最先进的,克服了现有技术的某些限制,例如在皮肤接触电极和汗水分析的情况下。 临时纹身在其他田地也像有机太阳能电池的发展和可转移的可食用晶体管的发展一样。 已经证明了临时纹身的多种和互补的制造方法,从传统的真空沉积方法到各种印刷技术。 在这篇评论中,以及纹身技术的主要制造方法和应用的报告和讨论,我们描述了的主要特征科学与技术系,林克普大学,601 74诺尔科平 *通讯作者:francesco.greco@tugraz.at关键字:临时纹身,可穿戴,可穿戴,可符合的电子学,表皮设备,在各种技术中的表皮领域摘要,以及各种方法。 在这里,临时纹身纸被用作非常规底物来构建可转移的身体符合身体的设备,该设备与皮肤建立了稳定且持久的界面。 基于纹身的设备显示了它们在多个领域的功能,并在人类健康生物监测中进行了主要应用。 这种方法正在推进最先进的,克服了现有技术的某些限制,例如在皮肤接触电极和汗水分析的情况下。 临时纹身在其他田地也像有机太阳能电池的发展和可转移的可食用晶体管的发展一样。 已经证明了临时纹身的多种和互补的制造方法,从传统的真空沉积方法到各种印刷技术。 在这篇评论中,以及纹身技术的主要制造方法和应用的报告和讨论,我们描述了的主要特征科学与技术系,林克普大学,601 74诺尔科平 *通讯作者:francesco.greco@tugraz.at关键字:临时纹身,可穿戴,可穿戴,可符合的电子学,表皮设备,在各种技术中的表皮领域摘要,以及各种方法。在这里,临时纹身纸被用作非常规底物来构建可转移的身体符合身体的设备,该设备与皮肤建立了稳定且持久的界面。基于纹身的设备显示了它们在多个领域的功能,并在人类健康生物监测中进行了主要应用。这种方法正在推进最先进的,克服了现有技术的某些限制,例如在皮肤接触电极和汗水分析的情况下。临时纹身在其他田地也像有机太阳能电池的发展和可转移的可食用晶体管的发展一样。已经证明了临时纹身的多种和互补的制造方法,从传统的真空沉积方法到各种印刷技术。在这篇评论中,以及纹身技术的主要制造方法和应用的报告和讨论,我们描述了
中高危皮肤黑色素瘤 (T3/T4) 接受手术治疗后,约 30-50% 的病例会在 5 年内复发。肠道微生物群由生活在肠道中的细菌和其他微生物组成,已被确定为接受免疫检查点抑制治疗的 IV 期黑色素瘤患者的治疗靶点。有趣的是,在中高危皮肤黑色素瘤(最低为 II A 期)中,经常会发现肿瘤浸润淋巴细胞,有时会导致这些肿瘤自发缓解。因此,探索该患者组的肠道微生物组成和肠道微生物群的调节能力以了解肠道微生物群是否能够在增强免疫系统功能方面发挥作用是有益的。膳食纤维可以调节肠道微生物组成,从而有利于能够产生短链脂肪酸 (SCFA) 的细菌。据推测,这些 SCFA 对免疫细胞组成、粪便钙卫蛋白水平、排便方式和整体健康有有益影响。
1. 法国蔚蓝海岸大学,法国国家信息与自动化研究所,2004 Route des Lucioles BP 93,06902 Sophia Antipolis Cedex,法国 2. 格拉茨工业大学固体物理研究所,NAWI Graz,8010 Graz,奥地利 3. 林雪平大学科学与技术系有机电子实验室,601 74 Norrköping,瑞典 * 通讯作者:francesco.greco@tugraz.at 关键词:临时纹身,可穿戴,可塑性电子器件,表皮设备 摘要 在不断发展的可塑性电子器件领域,迄今为止的各种方法中,纹身技术应运而生。在这里,临时纹身纸被用作非常规基材来构建可转移的贴合身体的设备,从而与皮肤建立稳定且持久的界面。基于纹身的设备已经在多个领域展示了其能力,主要应用于人类健康生物监测。这种方法正在推动最先进的技术发展,克服现有技术的一些限制,例如皮肤接触电极和汗液分析。临时纹身也已应用于其他领域,例如有机电子学、有机太阳能电池和可转移食用晶体管的开发。已经展示了多种互补的临时纹身制作方法,从传统的真空沉积方法到各种印刷技术。在这篇评论中,我们除了报告和讨论纹身技术的主要制作方法和应用外,还描述了纹身的主要特点。
越来越多的证据表明,构成微生物组的人类肠道细菌与几种神经退行性疾病有关。在几项研究中发现了帕金森氏病(PD)和阿尔茨海默氏病(AD)患者的细菌种群的失衡。这种营养不良很可能会降低或增加分别具有保护性或有害人体的微生物组衍生的分子,并通过所谓的“肠脑轴”传达给大脑的这些变化。微生物组衍生的分子Queuine是一种富含大脑中的核酶,仅由细菌产生,并由人类通过其肠道上的表现来挽救。Queuine用枪支抗密码子在TRNA的Wobble位置(位置34)取代鸟嘌呤,并促进有效的细胞质和线粒体mRNA翻译。Queuine耗竭会导致蛋白质的折叠和激活,并激活小鼠和人类细胞中内质网应激和展开的蛋白质反应途径。蛋白质聚集和线粒体障碍通常与神经功能障碍和神经变性有关。为了阐明女王是否可以促进蛋白质折叠,并防止导致蛋白质病的聚集和线粒体缺陷,我们在几种化学合成的Queuine STL-101中测试了几种化学合成的女性STL-101的作用。用STL-101预处理神经元后,我们观察到高磷酸化的α-突触核蛋白的降低显着降低,α-突触核蛋白的标记是灰核核疗法的PD模型中α-突出蛋白聚集的标志物,并且在Accute and Actau consation and actau pyphosphoration中降低了Actuce and Actau phossephose contau pysease contau pysepy pd。此外,在AD模型以及PD的神经毒性模型中,在用STL-101预处理的细胞中发现了神经元存活的相关增加。测量180个神经健康个体血浆中的queuine表明健康的人类维持皇后区的保护水平。我们的工作已经确定了女性在神经保护中的新作用,从而发现了神经系统疾病中STL-101的治疗潜力。
。cc-by-nc-nd 4.0国际许可证。是根据作者/资助者提供的预印本(未经Peer Review的认证)提供的,他已授予Biorxiv的许可证,以在2025年2月16日发布的此版本中显示此版本的版权持有人。 https://doi.org/10.1101/2025.02.12.12.637845 doi:Biorxiv Preprint
摘要:抗菌肽(AMP)均由所有表现出抗菌活性的活生物体产生,代表了对病原体的先天防御的第一线。在这种情况下,建议放大器作为古典抗生素的替代方法。然而,一些研究人员报告了他们参与了将它们定义为多功能放大器(MF -AMP)的不同过程。相关地,这些药物充当了人类有机体对几种dan -dan -de -fore刺激的内源反应。仍然,它们在其他生物体中被鉴定出来,并评估其抗癌治疗方法。div div div铬蛋白A(CGA)是在肾上腺髓质中首次发现的糖磷蛋白,但也在几个细胞中产生。CGA可以产生不同的派生AMP,从而影响众多生理过程。 皮肤肽(DRSS)是从Phyllomedusidae家族的几只叶青蛙的皮肤分泌物中分离出的α-螺旋形的多阳离子肽的家族。 几个DRS被识别为AMP,到目前为止,已经进行了65多种DRS。 最近,这些外源分子的抗癌活性是特征的。 在这篇综述中,我们总结了这两类MF -AMP的作用,作为CGA衍生肽内源性分子的一个例子,能够调节炎症,但也作为DRS的外源摩尔菌Cules,促进抗癌活性。CGA可以产生不同的派生AMP,从而影响众多生理过程。皮肤肽(DRSS)是从Phyllomedusidae家族的几只叶青蛙的皮肤分泌物中分离出的α-螺旋形的多阳离子肽的家族。几个DRS被识别为AMP,到目前为止,已经进行了65多种DRS。最近,这些外源分子的抗癌活性是特征的。在这篇综述中,我们总结了这两类MF -AMP的作用,作为CGA衍生肽内源性分子的一个例子,能够调节炎症,但也作为DRS的外源摩尔菌Cules,促进抗癌活性。
目前尚无类风湿关节炎(RA)的治疗方法,治疗目标是最大程度地减少炎症,防止结构性关节损伤并保持身体机能(1,2)。甲氨蝶呤,一种常规的合成疾病改良抗疾病药物(CSDMARD),干扰B维生素叶酸代谢,是RA管理的基石,被广泛接受为RA患者的一线治疗方法(3)。为了优化RA管理,在临床环境中广泛采用了定期监测和调整治疗以实现和维持特定临床目标的治疗方法的治疗策略(3,4)。最佳治疗靶标是达到长期缓解(3),但是在很大一部分患者中,使用甲氨蝶呤单药治疗范围为50%至60%,这是无法实现的(5-8)。早期鉴定患者不太可能实现缓解,可以允许具有临床益处的量身定制治疗策略。