空气污染是不容忽视的环境问题之一。工业增长和城市化导致许多地区的空气污染物浓度升高。这些污染物会对人类健康和其他生物造成损害。现有的污染物排放监测系统,如 Opsis、Codel、Urac 和 TAS-Air 指标通常很昂贵。此外,由于其工作原理,这些系统在烟囱上安装有限制。这导致工厂周围的其他区域不受监控,从而导致健康问题。本文提出了一种基于无线传感器网络 (WSN) 技术的工业空气污染监测系统。该系统与全球移动通信系统 (GSM) 集成,其使用的通信协议是 zigbee。该系统由传感器节点、控制中心和数据库组成,通过数据库可以存储传感数据,用于历史和未来规划。所提出的系统可以部署到工业中,用于监测工艺过程中工业排放产生的一氧化碳 (CO)、二氧化硫 (SO 2 ) 和粉尘浓度。
AMS:环境监测系统 APHA:美国公共卫生协会 ARO:阿什维尔地区办事处 ATB:水生毒性分部 BAB:生物评估分部 BAR:流域评估报告 BMP:最佳管理实践 CWA:清洁水法案 DMF:海洋渔业司 DO:溶解氧 DWR:水资源司 EB:生态系统分部 EMT:河口监测组 EPA:环境保护署 ESS:环境科学科 FRO:费耶特维尔地区办事处 GLP:良好实验室规范 HUC:水文单位代码 ISB:密集调查分部 MDL:方法检测限 MRO:摩尔斯维尔地区办事处 NC:北卡罗来纳州 NCDENR:北卡罗来纳州环境与自然资源部 NFQA:国家现场质量保证 NH 3:氨 NO 2:亚硝酸盐 NO 3:硝酸盐 NPDES:国家污染物排放消除系统 P:磷 PQL:实际定量限 QA:质量保证 QAM:质量保证手册 QAPP:质量保证项目计划 QC:质量控制 RAMS:随机环境监测系统 RRO:罗利地区办事处 SOP:标准操作程序 STORET:存储和检索数据仓库 TKN:总凯氏氮 TMDL:总最大日负荷 TSS:总悬浮固体 USGS:美国地质调查局 WaRO:华盛顿地区办事处 WiRO:威尔明顿地区办事处 WSRO:温斯顿塞勒姆地区办事处
A/C 飞机 ARMS 飞机记录和监控系统 CBM 基于条件的维护 CI 条件指示器 CG 重心 COTS 商用现货 CVR 驾驶舱语音记录器 DAU 数据采集单元 DSC 数字源收集器 EF 欧洲战斗机 EVM 发动机振动监控 FAA 美国联邦航空管理局 FDR 飞行数据记录器 HUMS 健康和使用监控系统 IAS 指示空速 IGB 中间齿轮箱 ILS 综合后勤支援 IPS 英寸/秒 IVHM 综合振动健康监控 MARMS 模块化飞机记录和监控系统 MGB 主齿轮箱 MSR 机械应变记录器 RMS 均方根 RTB 旋翼轨迹和平衡 SHM 结构健康监控
• 信息记录器既可以被动使用(事故发生后),也可以主动使用(监控前兆事件和 SMS 所需的数据)。信息记录设备将使事故调查人员能够获得有关事故情况的重要信息,从而更好地了解事故原因和安全改进的潜力。主动使用记录器使操作员能够对单个飞机的飞行操作进行监督,并在不良习惯和 [标准操作程序 (SOP)] 不合规行为升级为事故之前发现并纠正这些不良习惯和不合规行为。(建议 # IN2)
DEMMIN – 使用建模和遥感数据演示生物量潜力评估的试验场 Erik Borg 博士 *) 、Holger Maass *) 、Edgar Zabel **) *) 德国航空航天中心 (DLR)、德国遥感数据中心 (DFD) **) 兴趣小组 Demmin Kalkhorstweg 53 D- 17235 Neustrelitz 与会议 2 相关 摘要:通过“全球环境和安全监测 (GMES)”倡议,欧盟 (EU) 和欧洲航天局 (ESA) 制定了一项雄心勃勃的计划,利用空间遥感技术以及其他数据源和监测系统为欧洲市场提供各种环境、经济和安全方面的创新服务。为了实现这一目标,必须实施自动化的实时和近实时基础设施,以便自动处理遥感数据。空间段和地面段的必要开发和实施已经在推进中。将开发用于获取增值产品的自动化处理链和处理器,特别是开发用于校准和验证遥感任务的测试站点。海报介绍了 DLR 测试站点 DEMMIN(持久环境多学科监测信息网络),它是校准和验证生物质和生物能源增值数据产品、区域规模生物质模型(如 BETHY/DLR)的先决条件,并展示了在实践中使用遥感数据和产品获取生物质潜力的可能性。考虑到这一背景,该演示文稿介绍了 DLR 的测试站点 DEMMIN,包括其特定的区域特征、现场测量仪器和现有数据库。测试站点 DEMMIN 是一个密集使用的农业区,位于德国东北部梅克伦堡-前波美拉尼亚州德明镇附近(距柏林以北约 180 公里)。自 1999 年以来,DLR 与 Demmin 利益集团 (IG Demmin) 一直保持着密切的合作。DEMMIN 的范围从北纬 54°2 ′ 54.29 ″、东经 12°52 ′ 17.98 ″ 到北纬 53°45 ′ 40.42 ″、东经 13°27 ′ 49.45 ″。IG Demmin 由 5 家农业有限责任公司组成,占地约 25,000 公顷农田。该地貌属于上一次更新世 (Pommersches stadium) 形成的北德低地。其特点是冰川河流沉积物和冰川湖沼沉积物以及反映在略微起伏的地貌中的冰碛。土壤基质以壤土和沙壤土为主,与纯沙斑或粘土区域交替出现。试验场的海拔高度约为 50 米,试验场东南部托伦塞河沿岸有一些坡度较大的山坡(12°)。年平均气温为 7.6 至 8.2°C。降水量约为 500 至 650 毫米。由于微地形,气候条件在局部范围内可能存在很大差异。该地区的田地面积很大,平均为 80 - 100 公顷。主要种植的作物是冬季作物,覆盖该地区近 60% 的田地。玉米、甜菜和土豆约占 13%。由于 DLR 与 IG Demmin 的合作,科学家们得到了农民的支持,并为他们的调查提供了重要信息。例如,数字准静态数据(如土壤图、地块图)或数字动态数据(如产量图和应用图)。除了数据库之外,DEMMIN 还实现了农业气象网络,它可以自动测量影响成像过程的所有农业气象参数,同时进行空间或机载遥感。
这里显示的是典型的系统架构,类似于所有波音飞机上使用的架构:两个安装在发动机上的压电传感器,一个安装在风扇轴承上,一个安装在涡轮机壳体上,用于监测每个发动机的振动。EVM 上的前面板显示屏允许操作员轻松访问系统 BITE 消息、测量的振动值、FAN 和 LPT 平衡结果等。前面板维护连接器提供用于发动机故障排除的原始信号,还允许上传和下载操作软件。EVM 单元提供数字处理和 FFT 分析,用于振动参数趋势和冷平衡。发动机振动水平传输到飞机系统和驾驶舱显示器。
出于经济原因,机械用户的当前趋势是延长其旋转机械的使用寿命并提高工厂的可用性和可靠性。正在实施工厂寿命延长计划,而不是更换 20 到 30 年的机器,以使机器运行到其原始使用寿命甚至更长。由于机器的正常运行时间和可靠性对于发电站运营商来说是重中之重,因此安装有效的状态监测系统是一个非常重要的问题。满足峰值电力需求的抽水蓄能电站对发电机转子和定子施加了严重的热应力和机械应力。操作实践涉及每天两次或两次以上启动和关闭机器,这可能导致过早老化和与周期相关的定子绕组因材料中的高温度梯度而劣化。转子变形或转子径向偏差引起的振动问题促使许多大型发电机操作员安装一种有效的方法来测量静态和动态气隙。动态气隙监测是在水力发电机运行时测量转子到定子距离的过程。
本报告介绍了北欧五国(丹麦、芬兰、冰岛、挪威和瑞典)和波罗的海六国(爱沙尼亚、德国、拉脱维亚、立陶宛、波兰和俄罗斯联邦)的放射性应急监测国家系统。简要介绍了策略和设备方面的异同。预警的主要特点是全国自动伽马监测站网络。该网络由手动站和/或调查队补充,他们通常在预定位置进行测量。空气过滤站用于颗粒和气体的核素分析。地面沉积核素(例如铯-137)的剂量率图和沉降物图是根据来自空中测量、监测站、调查队和环境样本的数据制作的。大多数国家都描述了检查食品污染的计划。全身计数和器官测量用于确定内部污染。在检查站或根据需要,使用测量仪和其他设备检查人员、车辆、货物等的外部污染。各种现场测量完善了国家系统。讨论了未来可能的发展和计划的改进。本报告是对之前一份涵盖北欧国家的 NKS 报告的扩展和更新。