使用未增强的机器学习,基于大脑MRI衍生的体积特征将多发性硬化症患者(PWM)分层的抽象目标。方法回顾性地收集了包括3D-T1W和FLAIR-T2W序列的复发PWM的3-T脑MRI,以及残疾状态量表(EDSS)的扩大和长期(10±2年)临床结果(EDS,认知和渐进式课程)。从MRI中,脱髓鞘病变和116个Atlas定义的灰质区域的体积自动分割,并表示为引用外部种群的Z分数。在特征选择之后,基线MRI衍生的生物标志物进入了亚型和阶段推断(sovera)算法,该算法估计了以生物标志物进化的不同模式和亚组中的不同模式为特征的亚组。然后将训练的模型应用于纵向MRI。亚型和阶段变化随着时间的变化的稳定性分别通过Krippendorf的Sα和多级线性回归模型评估。通过序数/逻辑回归分析评估了维持分类的预后相关性。结果,我们选择了425个PWM(35.9±9.9岁; f/m:301/124),对应于1129次MRI扫描,以及健康对照(n = 148; 35.9±13.0年; f/m:f/m:77/71)和外部PWMS和外部PWMS(n = 80; 40.40; 40.4±11.9岁; f/m:56/M:56/M:56/M:56/M:56/M:56/。基于11种生物标志物的特征选择,确定了两个亚型,指定为“深灰质(DGM) - 首先”亚型(n = 238)和“ Cortex-first”亚型(n = 187),根据萎缩模式。亚型随着时间的推移是一致的(α= 0.806),年阶段显着增加(b = 0.20; p <0.001)。EDSS与阶段和DGM-FirST亚型相关(p≤0.02)。基线阶段预测了长期残疾,过渡到渐进型病程和认知障碍(p≤0.03),后者也与DGM-First第一个亚型有关(P = 0.005)。结论的无监督学习模型对大脑MRI衍生的体积特征提供了对PWM的生物学可靠和预后有意义的分层。关键点•脑MRI衍生的体积特征的无监督建模可以提供多发性硬化症患者的单访问分层。•所谓的分类往往会随着时间的流逝而保持一致,并捕获与疾病相关的脑损伤进展,从而支持模型的生物学可靠性。•基线分层可以预测长期的临床障碍,认知和过渡到次要进行的过程。
路线图显示了截至2021年3月底的检查状态,以及我们将如何使用基于风险的方法来解决推迟的检查工作。它描述了我们承诺执行FDA的任务,以保护和促进公共卫生的使命,以及我们希望在我们的员工安全,我们检查的设施的劳动力和公共卫生的头脑上过渡到尽快进行国内监视检查的愿望。在路线图发行后,FDA确定条件适合过渡到2021年7月1日开始的路线图中所述的基本案例方案,这意味着该机构将转向“标准运营水平”进行家庭监视检查。fda遵循基础案例场景中描述的标准操作方法的逐渐过渡,这是由于持续的,与大流行有关的因素阻止了最佳场景中描述的标准操作的立即过渡。
大脑中内源性活性的模式反映了神经元空间的随机探索,该探索受神经元的基础组装组织的约束。然而,仍然有待证明的是,神经元及其组装动力学之间的这种相互作用确实可以产生全脑数据统计。在这里,我们在斑马鱼幼虫中同时记录了约40,000个神经元的活性,并表明神经元组装相互作用的数据驱动网络模型可以准确地重现其自发活性的平均活性和成对的统计统计量。该模型是组成限制的玻尔兹曼机器,揭示了约200个神经组件,它组成了神经生理电路,其各种组合形成了连续的大脑状态。从中,我们从数学上得出了区域间连通性矩阵,该矩阵在各个动物之间是保守的,并且与结构连通性很好地相关。这种基于组装的新型神经动力学的生成模型可以实现生理结合的扰动实验。
自学学习(SSL)是一种无监督的表示技术,是深度学习中的热门话题。它涉及解决一个人工任务,该任务允许网络学习数据集的语义。然后可以使用所得的特征提取器进行传输学习,以减少解决实际下游任务所需的标记示例数量。这对于计算机辅助诊断具有巨大的实用价值,因为标签需要医学专家,这很昂贵[1]。SSL方法通常应用于图像补丁(例如拼图求解[2],上下文预测[3],对比度学习[4]或视觉变压器[5]),而下游任务通常与整个图像一起使用。此差异要求在两个单独的顺序步骤中实现SSL并转移学习。一种固有地使用补丁的技术是多个实例学习[6],因此对于许多SSL方法而言,可能是更自然的选择。
在体内对先锋因素与染色质的接口如何促进转录控制的可及性。在这里,我们通过活果蝇血细胞中的原型GAGA先驱因子(GAF)直接可视化染色质关联。单粒子跟踪表明,大多数GAF是染色质结合的,稳定的结合分数显示出在染色质上存放在染色质上的核小体样限量超过2分钟,比大多数转录因子的动态范围更长。这些动力学特性需要GAF的DNA结合,多聚化和本质上无序的结构域的完全补充,并且是招募的染色质重塑剂NURF和PBAP的自主性,其活动主要使GAF的邻居受益于HSF,例如HSF。对GAF动力学的评估及其内源性丰度表明,尽管有势动力学,但GAF组成且完全占据了染色质靶标,从而提供了一种时间机制,从而维持对体内稳态,环境和发育信号的转录染色质的开放式染色质。
生物医学图像计算和分析中心,放射学系B,抑郁和压力神经调节中心,精神病学系F,宾夕法尼亚州寿命和神经成像中心G,宾夕法尼亚州/CHOP LIFESPAN脑研究所H 102206,中国脑电路实时追踪的主要实验室(BCRTT-LAB)D,天津大学附属的天津第四中心医院;中国天津天津大学精神病学系 *通信:yong.fan@pennmedicine.upenn.edu生物医学图像计算和分析中心,放射学系B,抑郁和压力神经调节中心,精神病学系F,宾夕法尼亚州寿命和神经成像中心G,宾夕法尼亚州/CHOP LIFESPAN脑研究所H 102206,中国脑电路实时追踪的主要实验室(BCRTT-LAB)D,天津大学附属的天津第四中心医院;中国天津天津大学精神病学系 *通信:yong.fan@pennmedicine.upenn.edu
gpadmapriyame@gmail.com,rajiv5757@yahoo.co.in摘要:现在,一天的在线Web应用程序或在线数据库应用程序越来越多地暴露于各种攻击中。这样的一种窃取数据的攻击称为SQL注入攻击,其中攻击者修改用户启动的SQL查询,并添加恶意代码以访问和操纵Web应用程序或数据库中的信息。防止此类攻击的一种方法是定期更新和测试Web应用程序防火墙(WAF)。由于技术的巨大增长,打算攻击应用程序的攻击者找到了许多进入系统的新方法。在本文中,我们将机器学习的概念与WAF结合起来,从而最大程度地提高了现有系统的有效性。本文采用的方法是无监督的机器学习技术,该技术使用K-均值聚类算法。建议的系统的流量可以给出:最终用户在Web应用程序中进行查询,并提取查询值并将其发送到SQL注入检测器,该检测器提供两层安全性。在第一层安全性中,使用无上下文语法(CFG)创建模式,以用于低级攻击。使用无监督的学习算法对高级攻击的第二层安全性进行了训练。关键字:机器学习,无监督学习,SQL注入,WAF,CFG 1。简介Web应用程序防火墙(WAF)从一系列应用程序层攻击(例如跨站点脚本(XSS),SQL注入和Cookie Disuning等)中,将Web应用程序或在线数据库应用程序中的应用。HTTP应用程序使用Web应用程序防火墙(WAF)作为应用程序防火墙。在HTTP对话中,它应用了一系列规则。通常,这些规则允许跨站点等常见攻击
病理脑外观可能是如此异质,以至于仅作为异常而言可以理解,这是由于它们偏离正常性而不是任何特定的病理特征而定义的。在医学成像中最艰巨的任务中,检测这种异常需要正常大脑的模型,将紧凑性与复杂的,远程相互作用的表达性结合在一起,以表征其结构组织。这些要求是变形金刚比其他候选候选体系结构具有更大的满足潜力,但是它们对数据和计算资源的要求抑制了它们的应用。在这里,我们将矢量定量的变异自动编码器的潜在表示与自动回应变压器的集合结合在一起,以在相对适度的数据制度内以低计算成本以低计算成本实现的健康脑成像数据来偏离健康的脑成像数据,从而实现无监督的异常检测和分割定义。我们将我们的方法与涉及合成和实际病理病变的一系列实验中的当前最新方法进行了比较。在实际病变上,我们对来自英国生物库的15,000名放射线正常参与者进行训练,并评估四个不同的脑MR数据集,患有小血管疾病,脱髓鞘病变和肿瘤。我们在图像和像素方面都表现出了出色的异常检测性能,而无需后处理就可以实现。这些结果引起了对变压器在这项最具挑战性的成像任务中潜力的关注。关键字:变压器,无监督的异常分割,异常检测,neu-Roimaging,vector量化变异自动编码器
摘要在过去的十年中,研究人员,从业人员和公司努力制定机制来检测网络安全威胁。除其他努力中,这些努力是基于规则的,基于签名的基于签名或监督的机器学习(ML)算法,这些算法被证明有效地检测已经遇到和表征的那些侵犯。取而代之的是,新的未知威胁通常称为零日攻击或零周日,可能未发现,因为这些技术通常会被这些技术误解。近年来,无监督的异常检测算法显示出检测零周的潜力。然而,对无监督异常检测算法的定量分析的专门支持仍然很少,并且通常不会促进元学习,这有可能提高分类性能。在这样的程度上,本文介绍了零周期的问题,并审查了无监督的算法检测。然后,本文采用了提问方法来确定对零日检测进行定量分析的典型问题,并显示了如何使用适当的工具设置和行使无监督的算法。使用最新的攻击数据集,我们对i)特征对无监督算法的检测性能的影响,ii)评估入侵探测器的相关指标,iii)均需比较多个无用的算法,iiv),iv)iv算法,iv)iv)应用元学习的应用以减少错误分类的应用。最终,v)我们测量相对于零周的无监督异常检测算法的检测性能。总的来说,本文典型地说明了如何实际编排和应用适当的方法,过程和工具,甚至提供了非专家,以选择适当的策略来处理零日。
致我们的社区:欢迎阅读默塞德社区学院区 H 和 J 号法案公民监督委员会年度报告第十七版。作为您的代表,我们委员会的职责和特权是监督选民批准的用于升级和扩建默塞德社区学院和洛斯巴诺斯校区设施的资金的使用情况。委员会根据委员会收到的信息和审计员的年度报告向社区提交此报告。该委员会代表了默塞德社区学院区社区的横截面,包括默塞德、弗雷斯诺和马德拉县的社区。在过去的一年里,我们很高兴与默塞德社区学院区的学生、教师、员工和管理人员一起工作。作为该委员会的成员,我们可以向您保证,默塞德社区学院区的人们正在努力确保每一美元的 H 和 J 号法案都有效地用在对学区使命至关重要的项目上——为社区所有成员提供优质、负担得起、方便的教育机会。能够参与这些变革是件令人兴奋的事,这些变革将确保我们当地的学院继续成为居民和企业的宝贵资源。正如您将在本报告中看到的,我们正在进行几个项目,以修复老化的设施和基础设施、提高效率,并为学生和教师提供最新的技术工具,以增强学习体验。我们的委员会每年举行两次会议。欢迎公众参加。会议日期和地点已在学区网站上公布。您也可以就您的意见和/或问题与我们联系。我们期待您的来信。默塞德社区学院学区第 39 号提案公民债券监督委员会