别是石墨烯的 D 、 G 和 D+G( 也称 G') 峰 [ 19 ] ,这表 明两种样品都生成了高质量的石墨烯。其中 D 峰 是由于芳香环中 sp 2 碳网络扭曲使得碳原子发生 对称伸缩振动引起的 [ 20 ] ,用于衡量材料结构的无 序度,它的出现表明石墨烯的边缘较多或者含有 缺陷,这与 SEM 观察到的结果一致; G 峰是由 sp 2 碳原子间的拉伸振动引起的 [ 21 ] ; G' 峰也被称 为 2 D 峰,是双声子共振二阶拉曼峰,其强度与 石墨烯层数相关 [ 22 - 24 ] 。与 LIG 拉曼曲线相比, MnO 2 / LIG 在 472.6 cm −1 波段较强的峰值,对应于 Mn − O 的伸缩振动峰,证实了 MnO 2 的晶体结构。 XRD 测试结果表明, MnO 2 /LIG 在 2 θ =18.002° 、 28.268° 、 37.545° 、 49.954° 和 60.244° 处的特征峰分别对应 α - MnO 2 的 (200) 、 (310) 、 (211) 、 (411) 和 (521) 晶面 ( 图 4 b PDF#440141) , α -MnO 2 为隧道结构,可容 纳溶液中的阳离子 ( 如 Zn 2+ 、 Li + 、 Mg 2+ 、 Na + ) [ 21 ] 。 25.9° 和 44.8° 处的峰为 LIG 中 C 的特征衍射峰。
摘要 在本篇观点文章中,我们评估了使用聚焦电子和离子束直接制造纳米级超导器件及其在量子技术中的应用的当前研究状况。首先,本文介绍了主要的超导器件及其通过标准光刻技术(例如光学光刻和电子束光刻)制造的方法。然后,展示了通过铣削或辐照对超导体进行聚焦离子束图案化,以及通过聚焦电子和离子束诱导沉积来生长超导器件。我们认为这些无抗蚀剂直接生长技术对量子技术的主要好处包括能够制作电纳米接触和电路编辑、制造高分辨率超导谐振器、创建约瑟夫森结和用于尖端传感器的超导量子干涉装置 (SQUID)、图案化高温超导 SQUID 和其他超导电路,以及探索通量电子学和拓扑超导性。
现代信息技术的发展导致对具有复杂表面轮廓和纳米级表面粗糙度的微光学元件的需求巨大。因此,各种微纳加工技术被用于制造微光学元件和系统。飞秒激光直写(FsLDW)利用超快脉冲和飞秒激光的超强瞬时能量进行微纳加工。FsLDW表现出各种优异的性能,包括非线性多光子吸收、超越衍射极限的高精度加工和可加工材料的通用性,展示了其在三维(3D)微纳制造中的独特优势和潜在应用。FsLDW已在各种微光学系统的制造中展示了其价值。本研究详细介绍了FsLDW的三种典型原理、几种提高加工性能的设计考虑因素、可加工材料、成像/非成像微光学元件及其立体系统。最后,对FsLDW支持的微光学元件和立体系统的未来研究方向进行了总结和展望。
摘要:仿生神经元接口 (BNI) 的创建已成为从神经科学到人工智能等不同研究领域的当务之急。BNI 是二维或三维 (3D) 人工接口,模仿生物神经网络的几何和功能特征,以重建、理解和改善神经元功能。BNI 的研究是治疗神经元疾病和创建创新人工神经网络 (ANN) 的关键。为了实现这些目标,3D 直接激光写入 (DLW) 已被证明是一种用于复杂几何形状 BNI 的强大方法。然而,对 BNI 的大规模、高速制造的需求要求将 DLW 技术与 ANN 相结合。ANN 是一种受生物神经元启发的计算算法,已显示出前所未有的提高数据处理效率的能力。ANN 与 DLW 技术的结合为高效制造大规模 BNI 提供了一条创新途径,也可以启发为 ANN 设计和优化新型 BNI。本观点回顾了 BNI 的 DLW 进展,并讨论了 ANN 在 BNI 设计和制造中的作用。
质子束直写 (PBW) 是由新加坡国立大学离子束应用中心 (CIBA-NUS) 开发的一种直写光刻技术,该技术利用聚焦质子来制造三维纳米结构 [1 – 3] 。与电子束光刻 (EBL) 相比,PBW 的优势在于质子比电子重 ~1800 倍,这使得质子传递给二次电子的能量更少,可以更直地穿透材料,并在光刻胶中沿其路径沉积恒定的能量 [4] 。凭借这些独特的特性,PBW 可以制造没有邻近效应且具有光滑侧壁的纳米结构 [3,5] 。目前,PBW 在光斑尺寸和吞吐量方面的性能受到 PBW 系统中射频 (RF) 离子源亮度较低 (~20 A/(m 2 srV)) 的限制 [6,7] 。因此高亮度离子源是进一步提升PBW系统性能的关键。降低的亮度是体现光束质量的重要参数,如束流密度、束流角度扩展和束流能量扩展[8,9]。减小虚拟源尺寸是获得高亮度离子源的一种实用方法[10]。高亮度离子源,如液态金属离子源 (LMIS) 和气体场电离源 (GFIS),具有较小的虚拟源尺寸。LMIS 是应用最广泛的高亮度离子源,其尖端顶部有一个液态金属储存器[11-13]。强电场用于将液态金属拉到尖锐的电喷雾锥,称为泰勒锥[14]。
荣誉学位 :电子工程(5 年),主修光电子学 日期和地点:1989 年 7 月 14 日,巴勒莫大学 最后评价:满分,优异 论文及导师:激光直写微光刻工艺的开发和特性 S. Riva Sanseverino 教授和 C. Arnone 教授 政府资质:注册专业工程师,巴勒莫大学,1990 年 6 月 7 日 博士学位:电子、信息学和电信工程 日期和地点:1994 年 7 月 25 日,罗马 博士论文:激光直写微光刻:发展和新兴应用(巴勒莫大学) 现任职务:巴勒莫大学电子学副教授。担任过的相关职务: 2018年至今:负责控制论工程一级荣誉学位 2013-2016年:负责电子工程学位一级和二级 教学活动: 数字电子系统与实验室(2003年至今) 模拟与数字电子(2002-2005,2011) 电子设备(1993-1996 - 实验室) 意法半导体的“MOS结构:编程和擦除技术”。(1992) 硕士期间从事多项与智能建筑和能源效率相关的教学活动 主要活动:
作为直写光刻工程师,您将处于一个独特的位置,能够支持 Multibeam 的下一代电子束写入系统。您将为这个创新的光刻平台创建和验证新颖的写入技术和关键工具自动化策略。您将结合对系统设计和物理的理解以及计算方法,以扩展系统性能。作为工艺工程团队的一员,您将与公司其他部门密切合作,尤其是我们的柱技术和软件团队以及外部合作伙伴。理想的候选人是独立、灵活的,并且喜欢在快节奏和富有创意的技术环境中工作。
光子集成电路 (PIC) 长期以来一直被视为彻底改变光学的颠覆性平台。在成熟的电子集成电路制造工业代工厂基础设施的基础上,PIC 的制造取得了显著进展。然而,由于 PIC 的光学对准公差严格,因此需要专用封装仪器,因此 PIC 的封装往往成为阻碍其可扩展部署的主要障碍。双光子光刻 (TPL) 是一种具有深亚波长分辨率的激光直写三维 (3-D) 图案化技术,已成为集成光子封装的一种有前途的解决方案。本研究概述了该技术,强调了 TPL 封装方案的最新进展及其在主流光子行业中的应用前景。
摘要:尽管已经展示了各种微观和中观尺度的金属打印工艺,但打印基于合金与另一种合金/金属之间界面的功能设备(如热电偶、热电堆和热通量传感器)需要打印合金的工艺。此外,这些设备需要高质量的结晶合金才能发挥其可接受的功能。本文首次报道了从单一电解质中共电沉积打印单相固溶体纳米晶铜/镍 (Cu/Ni) 合金,该合金具有各种可控成分(Cu100Ni0 至 Cu19Ni81)。打印的合金是纳米晶体(<35 纳米),连续且致密,没有明显的孔隙度,具有出色的机械和磁性,无需任何后处理退火(如热处理)。此外,还展示了使用此工艺制造的功能热电偶。这种工艺不仅可用于制造功能设备,还可以通过打印用于材料表征的合金成分连续库来促进合金的基础研究。关键词:直写打印、受限电沉积、合金打印、铜/镍合金、共电沉积、机械性能、磁性■ 介绍
该公司重新革新了电子束光刻技术,使其能够快速成型和生产,并能以最快的速度将先进封装、光子学、安全芯片 ID 和其他特殊应用推向市场。这种无掩模多柱平台是业界唯一一款电子束解决方案,它采用模块化架构,提供全晶圆直写图案化功能和精细分辨率,并针对规模进行了优化。该全自动系统具有多个微型电子束传输柱,可独立写入以实现超高吞吐量,并采用先进的算法,实现前所未有的方向控制。结果:以最低的运营成本实现最快的首片晶圆生产速度 - 这项曾经因吞吐量低而只能停留在实验室环境中的极具价值的技术,现在却适合大批量的晶圆级生产。