摘要 - 本文对各种设计辅助技术对本机RRAM对硅的固有性能和可靠性的影响进行了全面评估。设计和技术的协作优化在替换传统闪存作为领先解决方案方面起着至关重要的作用。我们展示了使用读取之前的读取,电流限制和写入终止技术导致编程操作期间的功耗分别减少了47%,56%和13%。通过与写入验证和误差校正代码机制的结合,这些增强能够统称能源消耗减少83%,访问时间降低了55%。通过引入一种新颖的智能写算法(SWA),使这些进步成为可能。利用130nm CMOS技术实施的代表性128KB RRAM宏,这项研究显着有助于RRAM在嵌入式应用中的可行整合。对硅的实验评估验证了可靠性的提高,在经历了100万个周期后,读取了28.1µA读取边缘,而不会遇到任何读取错误,从而保持低于10 -7的位错误率(BER)。索引术语 - 无挥发性内存,ECC,智能算法,自适应和可重新配置系统,变体耐受
使用悬垂引物在PCR产物的末端添加悬垂序列来扩增感兴趣的序列。悬垂序列的长度取决于用于吉布森组件的商业套件。如果使用了来自新英格兰Biolabs(NEB)的HIFI组装主混合物,则足够的20个碱基对。
即使对于服务区域内的人,覆盖范围的可靠性在地理上受到陆地基础设施的限制。然而,降低卫星制造和部署成本已加速了将广阔的星座推向低地轨道(LEO),提供了提高的信号质量,更高的数据速度和更具成本效益的终端硬件。通过利用Leo卫星星座,D2D技术可以在没有地面基础设施的情况下进行通信,克服偏远地区的覆盖范围限制。几项关键的技术创新已经实现了D2D通信。高级波束形成技术[26]允许精确的信号专注于特定地理区域,增强信号质量并减少干扰。软件定义的有效载荷[25]提供动态频谱分配,可实时适应不同的用户需求和监管要求。增强的电力管理系统[33]具有延长卫星寿命并提高了能量效率。组件小型化和终端技术进步使标准智能手机和IoT设备能够直接与卫星通信。这些新事物共同克服了传统的障碍,例如信号衰减和设备兼容性,促进了无接缝的D2D通信并提高了全球连通性。除了技术进步外,监管进步还起着至关重要的作用。FCC拥有高级移动网络运营商 - 卫星网络运营商(MNO-SNO)频谱共享框架,从而可以在陆地和卫星网络之间更好地集成[29]。通过允许卫星操作员从MNOS租赁Spectrum,FCC的框架促进了动态和竞争性的卫星服务,推动MNOS和SNOS之间的和谐,并促进了多租户Leo卫星网络[39]。这样的频谱共享策略可以为最终用户提供更大的灵活性和协调性。表1总结了商业领域中关键D2D部署的状态。我们根据直接到X定义D2D通用的“类型”,其中X采用
摘要 目的:脑机接口 (BCI) 技术的发展是帮助因严重运动瘫痪而失去说话能力的人实现交流的关键。一种越来越受关注的 BCI 控制策略采用从神经数据进行语音解码。最近的研究表明,直接神经记录和高级计算模型的结合可以提供有希望的结果。了解哪些解码策略可以提供最佳和直接适用的结果对于推动该领域的发展至关重要。方法:在本文中,我们优化并验证了一种解码方法,该方法基于语音重建,该语音重建直接从语音生成任务期间来自感觉运动皮层的高密度皮层脑电图记录中进行。主要结果:我们表明 (1) 专用的机器学习优化重建模型是实现最佳重建性能的关键;(2) 重建语音中的单个单词解码准确率达到 92%-100%(偶然水平为 8%);(3) 从感觉运动大脑活动直接重建可以产生可理解的语音。意义。这些结果强调了模型优化以实现最佳语音解码结果的必要性,并强调了基于感觉运动皮层重建的语音解码为开发下一代 BCI 通信技术所提供的潜力。
情绪是我们精神生活和大脑功能的重要组成部分。它们可以用以下三要素来定义:(1)情感(有意识的体验)、(2)运动和行为适应以及(3)自主神经系统反应(Hamann,2001;Lang,1995)。具有正价的情绪对生活质量和幸福感有重要影响。它们可以通过促进决策、解决问题、社交互动和创造力来提高认知和社交能力(Ashby 等人,1999;Carpenter 等人,2013;Fredrickson,2004;GROSS,2002))。积极情绪的产生和调节主要使用功能性磁共振成像进行研究,其中不同的任务会引起愉悦的感觉,包括感官体验(Koelsch & Skouras,2014)、观看亲人的图像(Bartels & Zeki,2000;Nitschke 等,2004)或其他图像或影片(Brassen 等,2011;Garavan 等,2001;Kim & Hamann,2007)、回忆或想象愉快的情景(Matsunaga 等,2016;Pelletier 等,2003;Zotev 等,2011)或社会关系(Scharnowski 等,2020)。尽管根据所用范例会有所不同,但这些研究强调了腹侧“情绪”皮质-皮质下网络的含义,包括眶额皮质、前扣带皮质、岛叶、杏仁核以及尾状核、壳核、苍白球和脑干。在用皮层电图或立体定向脑电图 (SEEG) 对耐药性癫痫患者进行术前评估的背景下,也已使用直接脑电刺激 (EBS) 研究了愉悦意识感觉的神经基础。通过 EBS 对清醒患者进行脑部探索有几个优势。SEEG 具有比功能性 MRI(Mercier 等人,2022 年)更好的时间分辨率,并且靶向 EBS 允许建立直接的因果“刺激临床事件”关系。然而,只有少数研究表明 EBS 可以引起情绪感觉,重现常见的发作症状或罕见的癫痫发作期间不会遇到的感觉。Penfield 和他的合作者是描述患者在手术前刺激期间对 EBS 的反应中的体验和情绪现象的先驱之一(Penfield & Jasper,1954)。最近关于 EBS 对情绪影响的研究提供了所涉及皮质区域的功能性大脑图(Drane 等人,2021 年;Gordon 等人,1996 年)。特别是,杏仁核一再参与触发情绪反应,这些反应主要被认为是负面的(Bujarski 等人,2022 年;Inman 等人,2020 年;Lanteume 等人,2007 年)。大脑的其他区域也已被证明能产生情绪影响,比如其他内侧颞叶区域(鼻极皮质和颞极皮质)(Bartolomei 等人,2004 年;Meletti 等人,2006 年;Smith 等人,2006a 年)和岛叶(Bartolomei 等人,2019;Mazzola 等人,2019)。然而,与基于刺激的涉及其他认知和情绪功能的大脑区域的研究相比,关于 EBS 引发的积极情绪的研究仍然非常稀少(Drane 等人,2021),而且我们缺乏大脑网络对愉悦感觉影响的因果证据。
随着超表面在光学应用领域的应用越来越广泛,在其开发中需要一种能够以低成本实现大表面和亚100纳米尺寸的制造方法。由于其高吞吐量和小结构化能力,软纳米压印光刻是制造此类器件的良好候选方法。但是,由于必须使用低粘度聚合物才能达到所需尺寸,因此阻碍了其在可见光波长下超表面的应用,这使得最终的压印件更易碎,且该过程更昂贵、更复杂。在此,我们提出了一种PDMS模具制造方法,该方法依赖于PDMS的自组装掩模,然后直接蚀刻模具,从而与聚合物粘度无关可达到的最小尺寸。我们对使用我们的方法获得的模具制造的超表面进行了表征,验证了其在大表面器件纳米制造中的应用。
本文研究了热带气旋对全球年度部门增长的当前、滞后和间接影响。主要解释变量是基于气象数据对各个部门暴露加权的当地热带气旋强度的新损害测量方法,该方法包括在 1970-2015 年期间对最多 205 个国家的面板分析中。我发现热带气旋对农业以及贸易和旅游业等两个部门总量产生了显著的负面影响。在随后的几年里,热带气旋对大多数部门产生了负面影响。然而,投入产出分析表明,生产过程是棘手的,间接经济影响有限。
Sara Gouarderes、Layal Doumard、Patricia Vicendo、Anne-Françoise Mingotaud、Marie-Pierre Rols 等人。电穿孔不会直接影响人类真皮成纤维细胞的增殖和迁移特性,而是通过分泌组间接影响。生物电化学,2020 年,134,第 107531 页。�10.1016/j.bioelechem.2020.107531�。�hal-02560967�
Proton pump inhibitors (PPIs) are widely pre scribed for managing acid-related gastrointestinal con ditions such as gastric and duodenal ulcers, dyspepsia, gastroesophageal reflux disease (GERD), Zollinger-El lison syndrome, Helicobacter pylori ( H. pylori ) erad ication, and the prevention and management of与非甾体类抗炎药(NSAIDS)相关的溃疡(1)。这些药物通过不可逆地抑制胃顶细胞中的H⁺/k⁺-ATPase酶来抑制胃酸促进(2)。尽管通常被认为是安全有效的,但PPI与一系列不良反应相关联(1)。其中,超敏反应引起了重大的临床关注,其中包括从轻度皮肤病症状到严重的全身并发症的一系列表现(3)。
sylvain.poulet@cea.fr 摘要 — 超薄基板上柔性薄膜电子设备的出现是由开发与前端和后端工艺完全兼容的替代处理方法的需求所驱动。这项研究的目的是提出一种新的超薄玻璃基板处理方法,该方法基于直接玻璃-玻璃键合和室温剥离脱粘。通过在超薄玻璃基板(<100µm)上实现薄膜电池(<20µm)来评估这一概念。为了键合,将超薄玻璃层压在厚的载体玻璃(>500µm)上,没有中间层。薄膜电池堆栈采用连续物理气相沉积法制造,温度高达 400°C。脱粘过程在室温下通过机械剥离层压在薄膜电池上的封装膜完成。结果,脱粘后超薄玻璃(<100µm)没有任何裂纹的迹象。此外,脱粘过程之前和之后进行的电化学阻抗谱 (EIS) 和恒电流循环表明器件性能略有稳定。