摘要:对于微电网系统(MG)系统,正确配置的选择在整合低压,非线性,非线性和高度敏感的(环境条件)的电源(例如太阳能PV模块,电池和超级电池和超级电池)等时,在满足网格/负载必要性方面起着至关重要的作用。在MG系统的情况下,在任何应用程序中选择正确的配置和适当类型的功率转换器可能会对最佳性能产生重大影响。已经提出了许多架构来集成各种能源以实现最佳性能。在这些领域发表了大量研究文章。在本文中,介绍了基于各种来源和详细分析的各种体系结构的详细组织,并讨论了这些体系结构。此外,所有基于驱动因素(a)高转换增益,(b)良好的功率解耦,(c)较高效率,(d)隔离,(e)功能处理能力和(f)紧凑的设计的适用性。这项工作中介绍的批判性检查和比较研究可以帮助行业人员和院士选择最佳性能所需的最佳建筑和电源转换器拓扑。
摘要:为适应独立光伏与分布式储能系统直流微电网频繁充放电及提高充电精度,提出一种基于增强下垂控制的能量协调控制策略。通过优化多储能系统的输出优先级,提高直流微电网整体供电质量。当光伏、储能同时工作时,所提方法可动态调整光伏、储能工作状态及储能单元下垂系数以满足系统要求。在包含不同容量储能单元的直流微电网中,所提策略可保持母线电压稳定,提高储能荷电状态均衡速度与精度,避免储能单元因过充或放电而停机。利用MATLAB/Simulink对所提策略进行验证,仿真结果表明所提控制策略在平衡能量供需、减少储能单元充放电时间等方面的有效性。
经颅直流电刺激 (tDCS) 是一种非侵入性脑刺激技术 (NIBS),已被证明可对一系列神经和精神疾病产生有益作用。不幸的是,尽管已被广泛研究,但对 tDCS 效应机制的理解仍然存在一些空白。因此,科学家仍在尝试揭示其积极作用背后的细胞和分子机制,以便更合适地应用。实验模型提供了一致的证据表明,tDCS 通过调节神经元的兴奋性和突触可塑性来改善学习和记忆。最近,在 tDCS 神经生物学效应中,已报告了生理和病理条件下的神经同步和树突结构变化,表明可能在神经回路水平上产生影响。在这篇评论中,我们重点关注 tDCS 对结构可塑性变化和神经元重组的新兴影响,旨在将这两个方面与迄今为止发现的基础分子机制相匹配,为揭示 tDCS 在治疗脑功能障碍方面的新疗法提供新的视角。
可再生能源是可以无限期使用的能源。因此,太阳能光伏等可再生能源得到了发展。通常用于将微电网连接到电池的传统转换器只能改变电压。要将微电网连接到电池,需要双向转换器。双向转换器有多种配置。控制结构非常复杂,以获得令人满意的输出。本文提出了一种双向 DC-DC 降压-升压转换器,用于控制直流微电网、太阳能系统和负载中的电流。需要双向 DC-DC 降压-升压转换器将电池的能量传输和接收至直流微电网。当电压发送到直流微电网时,电池电压会降低。否则,当电池通过电压充电时,充电电压会增加。这种转换器产生的输出电压比 AC-DC 降压-升压转换器更好,其开关频率是典型转换器的两倍。改进的 DC-DC 转换器具有最简单的形式和最高响应度的优势。
为了提高电力系统的可靠性和弹性并减轻环境问题,引入了微电网 [1]。微电网由分布式能源和存储单元组成,这使得它们可以独立于主电网运行 [2]–[4]。这意味着,如果满足运行约束,微电网能够产生足够的电力来满足其需求 [5]。传统上,电力以交流形式输送。这是因为电力最初是以交流形式产生的,现有的输配电基础设施设计用于交流电。然而,直流电有一些好处,比如损耗更小、可靠性更高,在频率和电压调节方面的技术挑战也更少 [6]。在本文中,混合交流/直流微电网被认为受益于直流电的优势 [7],[8]。交通运输系统正在迅速向电气化转变,电动汽车越来越多地被引入其中。电动汽车的一个特点是其储能能力。如果实施得当,电动汽车还可以向电网注入电力。在我们之前的工作中,我们已经表明,电动汽车车队的储能能力可用于为电网提供多种服务 [9]。车辆到电网 (V2G) 的概念利用了电动汽车电池,并允许插电式电动汽车 (PEV) 用于电力系统运行 [10],[11]。系统运营商可以制定激励计划,鼓励 PEV 车主参与管理计划。此外,研究人员正在研究电动汽车停车场作为储能系统以提供灵活性 [12],[13]。在这项工作中,我们考虑了一个自我延续的零碳微电网,它有足够数量的可再生能源发电,以确保系统的可靠运行。我们考虑的不是大容量储能系统,而是系统各个节点的电动汽车充电站形式的分布式储能。结果表明,通过对电动汽车电池进行适当的管理,它们可以储存足够的能量来满足车主的日常出行需求,并确保在可再生能源发电不足期间微电网的可靠运行。这项工作的贡献可以总结如下:
摘要 — 混合交流/直流微电网 (MG) 可有效将可再生能源整合到电网中,多个 MG 的互连可通过能源共享提高系统的可靠性、效率和经济性。本文提出了一种用于网络化混合交流/直流 MG 的分布式稳健能源管理系统。对于每个单独的 MG,提出了一个可调稳健优化模型,以优化其单独的运营成本,同时考虑到可再生能源发电和负荷需求的不确定性。对于网络化 MG 系统,每个 MG 的能源共享信息由直流网络协调,以在网络约束下最小化电力传输损耗。通过交替方向乘数法 (ADMM) 制定、精确凸化并以分布式方式求解整体优化模型,其中只需要每个 MG 实体提供有限的信息(即向网络注入功率),从而保证信息隐私。对网络化混合交流/直流 MG 进行了仿真,以证明所提出的能源管理系统的有效性。
一些研究表明,单个经颅直流刺激(TDC)具有调节健康和运动员运动性能的潜力。据我们所知,先前发表的系统评价尚未全面研究TDC对体育绩效在身体和心理参数中的影响,也没有研究TDC对高级运动员的影响。我们检查了所有可用的研究测试,对TDC进行了一次关于力量,耐力,运动表现,情绪状态和认知表现的一次,以在国家或国际水平运动员的竞争和竞争前培训中进行更好的应用。直到2023年6月,在PubMed,Web of Science,EBSCO,EMBASE和SCOPUS进行了系统的搜索。当参与者在最少的州和国家一级比赛中拥有运动经验,进行了一次TDC,而没有其他干预措施,并且接受了SHAM TDCS或在对照组中没有干预措施。从18篇文章中包括了20项实验研究(224名参与者)。结果表明,在18个研究中,一个TDCS会议改善了物理和心理参数。,六个是指TDC在运动系统(运动皮层,前皮层,小脑)上的应用,在背外侧前额叶皮层上的五个,在颞皮层上进行了两个。对TDC最敏感的是力量,耐力和情绪状态,分别在67%,75%和75%的研究中提高。进一步的研究不到一半的研究表明,运动特异性任务(40%)和认知表现(33%)的改善。我们建议TDCS是一种有效的工具,可以应用于竞争和竞争前培训,以提高国家或国际水平运动员的运动表现。
电动汽车 (EV) 电池可用作微电网中的潜在储能设备。它们可以在有剩余能量时储存能量(电网到汽车,G2V),并在有需求时将能量回馈给电网(车辆到电网,V2G),从而帮助微电网进行能源管理。本研究侧重于智能微电网与双向直流快速充电的集成,利用车辆到电网 (V2G) 技术来增强能源管理。该项目采用自适应神经模糊推理系统 (ANFIS) 控制器来智能调节微电网和电动汽车之间的双向功率流。V2G 的集成促进了能量交换,使电动汽车可以用作移动储能单元。双向直流快速充电系统通过 ANFIS 控制器进行优化,确保高效的能量传输、电网稳定性和负载平衡。进行了模拟研究以展示 V2G-G2V 功率传输。
经颅直流电刺激 (tDCS) 是一种非侵入性脑刺激方法,通过在阳极和阴极电极之间短时间(通常每次少于 30 分钟)施加电流(通常小于 2 mA)来调节神经活动 (17)。之前的荟萃分析报告称,向背外侧前额皮质 (DLPFC) 施加 tDCS 可减轻精神分裂症患者的幻觉(阳性症状;Hedges' g = 0.86)和阴性症状(0.41),并改善神经认知功能,特别是工作记忆(0.41)(18-23)。最近,据报道,针对 DLPFC 的 tDCS 还可以提高日常生活技能(功能能力)(24)、对疾病的洞察力(25)和元认知(26)。关于社会认知,我们系统回顾的数据表明,前额皮质上的经颅直流电刺激 (tDCS) 可增强情绪识别 (27),而左侧颞上沟 (STS) 上的刺激可提高这些患者的心理理论得分 (28-30)。因此,尽管存在争议,但经颅直流电刺激 (tDCS) 的电极组合,尤其是阳极刺激部位,可能决定其对精神病患者症状和功能的影响 (31-33)。总之,需要进一步考虑以了解应刺激哪些大脑区域以改善精神分裂症的特定症状 (34)。
在直流微电网 (dc MG) 中,直流链路电容器非常小,无法提供固有惯性。因此,在负载变化或电力资源波动的不确定波动期间会出现较大的电压偏差。这会导致电压质量下降。为了克服低惯性问题,本文提出了一种快速响应的能量存储系统,例如超级电容器,它可以通过某些特定的控制算法模拟惯性响应。双向直流-直流转换器用于将超级电容器能量存储连接到直流 MG。所提出的控制方案由虚拟电容器和虚拟电导组成。它在内环控制中实现,即电流环控制足够快地模拟惯性和阻尼概念。为了研究直流 MG 的稳定性,推导了一个全面的小信号模型,然后使用系统的根轨迹分析确定了可接受的惯性响应参数范围。通过数值模拟证明了所提出的控制结构的性能。