图 2 (a) 显示了 V GS =0 V 下三种不同通道结构的能带图。图 2 (b) 显示了通道区域中的导带。垂直切割是在栅极电极中心进行的。如图 2 所示,能带可以通过不同的通道结构进行调制。研究发现,CC 通道和 DC 通道可以有效增加导带。与 SC 结构相比,CC 和 DC 结构的势阱深度分别增加了 0.37 eV 和 0.39 eV。这意味着 CC 和 DC 结构增强了通道区域中电子的限制。此外,DC 通道形成了双电子势阱。第二个势阱将减少扩散到 InAlAs 缓冲层中的电子数量。因此,DC 通道结构在电子限制方面比 SC 和 CC 通道结构更有效。
摘要:本文旨在从本质上调节电力系统扰动条件下直流微电网的直流母线电压。因此,提出了一种新型最优模型预测超扭转分数阶滑模控制 (OMP-STFOSMC),用于三相交流-直流转换器,可有效提高微电网的稳定性和动态性能。传统的模型预测控制器严重影响动态稳定性,导致过冲、下冲和稳定时间过长。可以用滑模控制器代替这些传统控制器,以适当解决此问题。传统滑模控制器的主要缺点是控制信号中的高频抖动,这会影响系统,并且使其在实际应用中不令人满意且不可行。所提出的 OMP-STFOSMC 可以有效提高控制跟踪性能并减少高频抖动问题。随机分形搜索 (SFS) 算法因其高探索性和良好的局部最优规避能力而被用于最佳地调整控制器参数。考虑不同的运行条件来评估所提出的控制器的动态和无抖动性能。通过比较分析的仿真结果,可以观察到所提出的OMP-STFOSMC具有更好的动态稳定性特性。关键词:直流微电网,跟踪性能,抖动问题,OMP-STFOSMC,SFS算法
1.1 简介 自 1951 年以来,ENDEVCO 一直是振动测量领域的领导者,并在振动传感器设计方面做出了许多贡献。其中包括:第一个能够在低温至 +750°F 的温度下连续工作的压电加速度计、第一个剪切设计加速度计和世界上最小的压电加速度计。为了支持广泛的振动传感器系列,ENDEVCO 提供了各种各样的信号调节器,包括第一个晶体管电荷放大器、第一个计算机可编程电荷放大器和第一个基于真正数字跟踪滤波器的机载振动监测系统。信号调节器 为了支持其传感器在大规模测试中的使用,ENDEVCO 开发了几代信号调节器系统。直到最近,最先进的振动实验室还由一排手动控制信号调节器组成。这些信号调节器具有手动控制的开关和旋钮,用于设置满量程范围、灵敏度和滤波器角,并且设置信息是手动记录的。计算机控制信号调节器为了消除放大器设置不正确的风险,ENDEVCO 率先提出了计算机控制信号调节器的概念。第一代是多通道放大器控制系统 (MAC)。第二代是计算机控制放大器系统 (CCAS)。CCAS 系列由五个不同的系统组成,它们使用相同的机架和带有不同模拟板的数字接口组件。这些单元通过 IEEE-488 接口总线从计算机/控制器接收设置命令,以便可以预先编程测试。此外,这些设备提供全面的自检和自校准功能,大大提高了测试数据的可靠性。用户反馈表明,这些设备通过缩短测试周期、防止重新测试和消除过度测试,很快就收回了成本。手动/计算机控制信号调节器 前两代计算机控制放大器的经验现已应用于第三代产品线:可编程桥式调节器和可编程实验室信号调节器。这些设备是独立控制的,每个设备都包含自己的电源,以确保单通道完整性。型号 136 具有手动和计算机可编程功能。这款直流放大器是 Endevco 致力于改进最先进的传感测量技术的一个例子。新一代产品体积更小,功能更多,并将继续扩展以满足日益广泛的应用需求。
– 提高系统效率 – 降低系统成本和安装成本 – 能源存储系统 (ESS) 和可再生能源(风能、太阳能等) – 分布式能源资源 (DER) 的能源管理系统 (EMS) • 优化大规模电动汽车 DCFC 带来的日常能源需求对于减少对公用电网的影响至关重要
摘要:现代电力系统中可再生能源的广泛使用增加了系统电压和功率的波动。此外,使用可再生能源 (RES) 的主要难题是风能和光伏 (PV) 系统的间歇性和对风速和太阳辐照度的依赖性。因此,利用强大而有效的 RES 储能系统 (ESS) 对于克服这些挑战和困境至关重要。本文介绍了使用电池存储系统 (BSS) 和超导磁能存储 (SMES) 系统对直流母线微电网集成混合太阳能-风能系统的影响。所提出的方法采用 BSS 和 SMES 的组合来提高微电网在不同事件(例如风力变化、阴影、风力涡轮机 (WT) 连接和突然光伏断电事件)期间的稳定性。提出了不同的控制方法来控制系统的不同组件,以提高整个系统的稳定性和电力交换。光伏系统和风电系统均配备独特的最大功率点跟踪 (MPPT) 控制器。此外,每个 ESS 都使用建议的控制方法来控制,以监督系统内有功功率的交换,并在不同的不稳定性期间保持直流总线电压恒定。此外,为了保持负载电压/频率恒定,使用建议的逆变器控制单元控制主逆变器。使用 Matlab/Simulink 执行的仿真结果表明,混合 BSS + SMES 系统成功实现了主要目标,即直流电压、交换功率和负载电压/频率得到改善和平滑。此外,还对三个案例研究进行了比较,即不使用 ESS、仅使用 BSS 以及再次使用 BSS 和 SMES 系统。研究结果证明了基于混合 BSS + SMES 方法的所提控制方法比仅使用 BSS 的控制方法更有效地在可变事件期间保持现代电力系统的稳定性和可靠性。
生物电化学储能 (BES) 系统能够将电能转化为生物甲烷,其结构类似于燃料电池,因为多个低压模块串联连接形成堆栈,然后并联以达到所需功率。然而,在这种情况下,BES 模块充当气体储能/负载,产生可储存的生物甲烷作为产品。本文提出了一种用于 BES 堆栈的多输出多级 AC/DC 电源转换系统。所提出的拓扑结构类似于模块化多级转换器 (MMC),其中 BES 堆栈连接到子模块,并且直流链路中仅存在一个电容器。因此,它只需要在交流侧使用一个小滤波器,同时可以同时控制所有 BES 堆栈的电压和功率。提出了所提出的电源转换系统的数学模型,然后设计了一种控制方案,以实现以下目标:1) 同时控制所有输出电压;2) 独立控制与电网交换的有功和无功功率;3) 控制电网电流的质量; 4) 抑制环流。为了验证系统性能,我们展示了从包含 18 个堆栈的 10 kW BES 系统获得的 OPAL-RT 实时模拟结果。© 2022 由 Elsevier Ltd. 出版。
在单层石墨烯首次实现后不久,人们就证明这种二维六边形碳晶格的独特能带结构即使在室温下也能实现稳定的霍尔电阻量化 [1]。这引发了电量子计量领域的许多研究,旨在实现比传统 GaAs 基标准可在更高温度和更低磁场中使用的电阻标准 [2-9]。电阻计量基于二维电子气系统中的整数量子霍尔效应 (QHE)。电阻平台与冯·克利青常数 R K = h / e 2 的整数分之一直接相关,其中普朗克常数 h 和基本电荷 e [10] 是自 2019 年 SI 修订以来精确定义的值 [11-13]。低温电流比较器 (CCC) 是一种高灵敏度的缩放工具,用于验证量化电阻 [14] 并用于建立直流 (DC) 电阻刻度。在实践中,后者包括校准标准电阻,其十进制标称值可追溯到量化霍尔电阻 (QHR),对于选定的标称值,可以在低至 n Ω / Ω 范围内的不确定度下执行 [14, 15]。此外,电容单位法拉可以通过使用交流 (AC) 的 QHE 测量得出 [16]。测量不确定度优于 10 nF F − 1
其中 RL 为阻性负载,V s /2 为电压源,S 1 和 S 2 为两个开关,i 0 为电流。其中每个开关并联连接到二极管 D 1 和 D 2。上图中,开关 S 1 和 S 2 为自换向开关。电压为正电流为负时,开关 S 1 导通;电压为负电流为负时,开关 S 2 导通。电压为正电流为负时,二极管 D 1 导通;电压为负电流为正时,二极管 D 2 导通。情况 1(当开关 S 1 处于 ON 状态且 S 2 处于 OFF 状态时):当开关 S 1 在 0 到 T/2 的时间段内处于 ON 状态时,二极管 D 1 和 D 2 处于反向偏置状态,而 S 2 开关处于 OFF 状态。应用 KVL(基尔霍夫电压定律)
在本文中,我们提出了一种新的分散控制和功率共享策略来管理能源 (ES)、储能系统 (ESS) 和公共直流链路之间的功率流。在所提出的技术中,我们消除了 ESS 之间的所有通信,以降低复杂性并提高可靠性,保持直流链路电压恢复。在这种情况下,电池和超级电容器 (UC) 是 ESS,而 ES 可以是任何电源,例如光伏、风能、燃料电池等。该技术根据电池的充电状态 (SoC) 和能量容量按比例共享电池之间的微电网功率不平衡,实现 SoC 均衡。该技术还促进了 UC 的电压恢复,在功率瞬变期间提供功率峰值后保持其平均电压恒定。对于所有 ESS,仅测量局部变量,例如局部电流和直流链路电压,ESS 之间没有共享数据。进行了小信号和稳定性分析,以及实验室台架上的实验结果,证明了该技术的可行性和性能。
阿尔茨海默病 (AD) 和帕金森病 (PD) 是神经退行性疾病,其特征是随着疾病进展认知障碍和功能衰退。在非药物干预中,经颅直流电刺激 (tDCS) 可能是一种经济有效的康复策略,可以实现认知能力,对患者的功能自主性和生活质量产生积极影响。我们的系统评价旨在评估 tDCS 对 AD 和 PD 患者认知的影响。我们在 PubMed、Web of Science 和 Cochrane Library 中搜索了随机对照试验 (RCT)。三位综述作者提取了感兴趣的数据,以神经心理学测试或实验认知任务分数作为结果测量。共纳入 17 项 RCT(10 项针对 AD 的试验和 7 项针对 PD 的试验)。与假刺激相比,tDCS 可以改善 AD 患者的整体认知和识别记忆,以及 PD 患者的一些执行功能(即分散注意力、语言流畅性和对干扰的敏感性降低)。对于其他研究的认知领域的好处,仍然存在批评。尽管初步证据不断涌现,但未来应用心理学领域的研究仍需要更大规模的 RCT,采用常见的神经心理学测量方法,并进行长期随访,以确定观察到的效果的持久性,同时还需要改进神经退行性疾病的临床指南,包括电极连接、疗程次数、刺激的持续时间和强度以及要使用的认知电池。