[1] Egger G,Liang G,Aparicio A等。人类疾病的表观遗传学和表观遗传疗法的前景。 自然,2004,429:457-63 [2] Varmus H.为基于基因的药物做好准备。 New Engl J Med,2002,347:1526-7 [3] Pogue RE,Cavalcanti DP,Shanker S等。 罕见的遗传疾病:诊断,治疗和在线资源的更新。 Div> Discov今天,2018年,23:187-95 [4] Fischer A,Cavazzana-Calvo M.遗传疾病的基因治疗。 Lancet,2008,371:2044-7 [5] Porteus M.基因组编辑:一种新的人类治疗方法。 Annu Rev Pharmacol Toxicol,2016,56:163-90 [6] Cox DBT,Platt RJ,ZhangF。治疗基因组编辑:前景和挑战。 nat Med,2015,21:121-31 [7] Barrangou R,Fremaux C,Deveau H等。 crispr提供了对原核生物中病毒的抗药性。 Science,2007,315:1709-12 [8] Deltcheva E,Chylinski K,Sharma CM等。 CRISPR RNA通过反式编码的小RNA和宿主因子RNase III成熟。 自然,2011,471:602-7 [9] Cong L,Ran FA,Cox D等。 使用CRISPR/CAS系统的多重基因组工程。 Science,2013,339:819-23 [10] Jinek M,Chylinski K,Fonfara I等。 适应性细菌免疫中可编程的双RNA引导的DNA内切酶。 Science,2012,337:816-21 [11] Maruyama T,Dougan SK,Truttmann MC等。 通过抑制非同源末端连接来提高精确基因组编辑的效率。 nat Biotechnol,2015,33:538-42 [12] Shmakov S,Smargon A,Scott D等。 快照:2类CRISPR-CAS系统。人类疾病的表观遗传学和表观遗传疗法的前景。自然,2004,429:457-63 [2] Varmus H.为基于基因的药物做好准备。New Engl J Med,2002,347:1526-7 [3] Pogue RE,Cavalcanti DP,Shanker S等。罕见的遗传疾病:诊断,治疗和在线资源的更新。Div> Discov今天,2018年,23:187-95 [4] Fischer A,Cavazzana-Calvo M.遗传疾病的基因治疗。Lancet,2008,371:2044-7 [5] Porteus M.基因组编辑:一种新的人类治疗方法。Annu Rev Pharmacol Toxicol,2016,56:163-90 [6] Cox DBT,Platt RJ,ZhangF。治疗基因组编辑:前景和挑战。nat Med,2015,21:121-31 [7] Barrangou R,Fremaux C,Deveau H等。crispr提供了对原核生物中病毒的抗药性。Science,2007,315:1709-12 [8] Deltcheva E,Chylinski K,Sharma CM等。CRISPR RNA通过反式编码的小RNA和宿主因子RNase III成熟。自然,2011,471:602-7 [9] Cong L,Ran FA,Cox D等。使用CRISPR/CAS系统的多重基因组工程。Science,2013,339:819-23 [10] Jinek M,Chylinski K,Fonfara I等。适应性细菌免疫中可编程的双RNA引导的DNA内切酶。Science,2012,337:816-21 [11] Maruyama T,Dougan SK,Truttmann MC等。通过抑制非同源末端连接来提高精确基因组编辑的效率。nat Biotechnol,2015,33:538-42 [12] Shmakov S,Smargon A,Scott D等。快照:2类CRISPR-CAS系统。2类CRISPR-CAS系统的多样性和演变。Nat Rev Microbiol,2017,15:169-82 [13] Makarova KS,Zhang F,Koonin EV。Cell,2017,168:328-328.e1 [14] Zetsche B,Gootenberg JS,Abudayyeh Oo等。CPF1是2类CRISPR- CAS系统的单个RNA引导的内切酶。 Cell,2015,163:759-71 [15] Ran Fa,Cong L,Yan WX等。 使用金黄色葡萄球菌Cas9的体内基因组编辑。 自然,2015,520:186-91 [16] Kim E,Koo T,Park SW等。 在体内基因组编辑中,带有弯曲杆菌的小Cas9直系同源CPF1是2类CRISPR- CAS系统的单个RNA引导的内切酶。Cell,2015,163:759-71 [15] Ran Fa,Cong L,Yan WX等。使用金黄色葡萄球菌Cas9的体内基因组编辑。 自然,2015,520:186-91 [16] Kim E,Koo T,Park SW等。 在体内基因组编辑中,带有弯曲杆菌的小Cas9直系同源使用金黄色葡萄球菌Cas9的体内基因组编辑。自然,2015,520:186-91 [16] Kim E,Koo T,Park SW等。在体内基因组编辑中,带有弯曲杆菌的小Cas9直系同源在体内基因组编辑中,带有弯曲杆菌的小Cas9直系同源
简单摘要:在动物中,性别二态性状普遍存在,并在繁殖、求偶和环境适应中发挥重要作用,尤其是在昆虫中。在本研究中,我们利用 CRISPR/Cas9 基因组编辑系统对亚洲玉米螟性别决定途径中的 Masculinizer ( Masc ) 和 doublesex ( dsx ) 基因产生体细胞突变。OfMasc 和 Ofdsx 基因是家蚕关键性别调节因子的结构直系同源物。OfMasc 和 Ofdsx 基因突变会导致外生殖器异常、成虫不育以及包括翅膀色素沉着、基因表达模式和 dsx 性别特异性剪接在内的性别二态性状的性别逆转。这些结果表明 Masc 和 dsx 基因是性别二态性状的保守因子,因此是控制亚洲玉米螟和其他鳞翅目害虫的潜在目标基因。
使用计算机建模探索了文化、社会学习、脑容量和 LS 之间可能存在的进化相互作用模式,这些模式适用于具有高群体凝聚力、合作资源获取、配对结合、父母对后代的高投资以及适应行为的文化传递基本能力的社会物种。所有这些特征可能都存在于更新世人类物种及其直系祖先中 [14-16]。在过去两百万年中,人类进化的脑容量增加了三倍,尽管成本似乎很高 [17-22]。这种快速脑容量的进化模式在灵长类动物中似乎是独一无二的 [23]。这些事实意味着,在人类进化过程中,对脑容量的选择可能是由强烈的正反馈驱动的,而不是由气候或不同食物资源的可用性等简单的生态因素驱动的(有关更详细的讨论,请参阅 [13])。在当前的研究中,我们基于一个
摘要。nthocyanin高蓄能是一种重要的农业特征,与对非生物胁迫,害虫,植物致病性真菌和细菌性疾病的抗性有关。B. Napus随着基因组编辑而产生的花色素色素化增加。MYB家族的许多转录因子都参与压力反应和花青素生物合成。基因ATMYB60,ATCPC和ATMYBL2是拟南芥中花青素生物合成的负调节剂,因此这些基因的敲除可以导致花呢素色素沉着增加。GRNA垫片合成以靶向这些基因的直系同源物,这些基因在甘蓝甘蓝中鉴定出来。通过农业浸润将遗传构建体引入植物组织。靶向myb转录因子的DNA结合结构域的GRNA的瞬态表达以及CAS9核酸酶成功促进了花青素的高蓄积。这些遗传构建体可用于基因组编辑和生产新的有色和胁迫的油料种子强奸品种。
CRISPR-Cas 系统是原核生物的一种免疫机制,可特异性识别和降解外源核酸,从基因上保护生物体 [1]。CRISPR-Cas 系统的功能分为用于靶核酸识别的向导 RNA (gRNA) 和用于切割的 Cas 核酸酶 [1]。该模块化系统通过修改 gRNA 上的靶标识别序列 (TRS) 来切割所需的核苷酸序列 [2],从而实现跨各种生物体(包括微生物)的基因组编辑 [3, 4]。第 2 类 CRISPR-Cas 系统具有单个效应蛋白,主要用于基因组编辑。值得注意的是,大量研究集中在源自化脓性链球菌 (SpCas9) 的 Cas9 [5]。然而,Cas9 蛋白的异源表达可能导致细胞毒性或异常生长 [6, 7]。因此,内源性 CRISPR-Cas 系统 [8]、Cas9 直系同源物 [9] 和 Cas12 或 Cas13 [10] 被用作编辑工具,以提供与靶细胞更好的兼容性。此外,广泛使用的 SpCas9 的尺寸较大(4.1 kb;1,368 aa),这带来了挑战,特别是在包装到空间有限的病毒载体中时 [11]。微型 CRISPR-Cas12f1 系统因其解决这一挑战的潜力而备受关注。Cas12f1 直系同源物由约 500 aa 的单个多肽组成,这比 Cas9 的长度短得多 [12]。已知 Cas12f1 核酸酶形成二聚体,每个单个 RuvC 结构域切割靶 DNA 的两条链 [13, 14]。 Cas12f1 核酸酶在基因组中用于单基因编辑已被报道在多种生物体中,包括大肠杆菌 [15, 16]、炭疽芽孢杆菌 [17]、肺炎克雷伯菌 [18]、小鼠 [19] 和人类 [20, 21]。最近,在天蓝色链霉菌中证实了 Cas12f1 介导的两个基因同时缺失 [22]。然而,Cas12f1 在精确的多重基因组编辑中的应用尚未有记录。在本研究中,我们尝试使用 CRISPR-Cas12f1 系统在大肠杆菌中进行单核苷酸水平的多重基因组编辑。采用了两种策略——调节细胞恢复温度和修改 gRNA,并评估了它们对多重基因组编辑效率和准确性的影响。
南方印迹和北方印迹都是将核酸转移到膜上的分子生物学技术,随后通过杂交程序检测特定的核酸序列。南方印迹用于识别特定的 DNA 序列,例如找出生物体中存在多少个特定基因的拷贝,而北方印迹用于比较不同生物体之间的 mRNA 池。由于 RNAseq、微阵列和 RT-PCR 现在是分析物种间 mRNA 池的常用方法,有时也更灵敏,因此北方印迹现在不太常用。另一方面,南方印迹仍然是一种非常流行的方法,因为与 PCR 相比,它还可用于识别直系同源或旁系同源基因、外来基因的部分插入或基因组内特定基因的拷贝数,因为只需要知道基因的基本序列,而不需要知道特定的引物结合位点。由于如今很少进行北方印迹实验,因此本信息手册将主要关注南方印迹实验。
胰岛素样肽(ILP)在脊椎动物的生长、代谢和繁殖中起着关键作用。在甲壳类动物中,一种类型的 ILP,胰岛素样雄激素腺激素(IAG)据报道与性别分化有关。然而,其他类型 ILP 的功能很少报道。在这里,我们在脊尾白虾(EcILP)中鉴定了另一种类型的 ILP,它是果蝇 ILP7 的直系同源物。序列表征和表达分析表明,EcILP 的异二聚体结构和表达谱与脊椎动物的胰岛素/IGF 和昆虫 ILP 相似。利用 CRISPR/Cas9 基因组编辑技术,我们生成了 EcILP 敲除(KO)对虾。EcILP -KO 个体的生长抑制性状和死亡率明显高于正常组。此外,通过RNA干扰(RNAi)敲低EcILP导致生长速度减慢,死亡率增加。这些结果表明EcILP是脊尾棘鱼重要的生长调节剂。
胞嘧啶碱基编辑能够在不造成 DNA 双链断裂的情况下安装特定点突变,这对基因治疗等各种应用都有好处,但需要进一步降低脱靶风险并开发有效的递送方法。在这里,我们展示了基于结构的胞嘧啶碱基编辑系统 Target-AID 的合理工程设计,以最大限度地减少其脱靶效应和分子大小。通过密集而仔细的截断,其脱氨酶 PmCDA1 的 DNA 结合域被消除,并引入额外的突变以恢复酶功能。所得的 tCDA1EQ 在与 Cas9 的 N 端融合(AID-2S)或镶嵌结构(AID-3S)中有效,显示出最小化的 RNA 介导的编辑和 gRNA 依赖性/非依赖性的 DNA 脱靶,如在人类细胞中评估的那样。与较小的Cas9直系同源系统(SaCas9)结合,创建在AAV载体大小限制内的胞嘧啶碱基编辑系统。
结果:在这里,我们提出了Grana,这是对成对NA问题的监督NA范式的深度学习框架。使用图形神经网络,Grana利用网络内部的相互作用和跨网络锚链接来学习蛋白质表示并预测各种物种蛋白质之间的功能对应关系。Grana的主要优势是它的灵活性是整合多方面的非功能关系数据,例如序列相似性和直系同源关系,作为指导跨物种功能相关的蛋白质映射的锚定链接。评估由不同物种对之间的几个NA任务组成的基准数据集上的GRANA,我们观察到Grana准确地预测了蛋白质的功能相关性,并跨物种稳健地传递了功能注释,超过了许多现有的NA方法。当应用于人源化酵母网络上的案例研究时,Grana还成功发现了在先前研究中已记录的在功能上可替代的人类 - 透明蛋白对。
Cas12a(以前称为 Cpf1)核酸酶在基因组工程中的广泛使用受到它们需要相当长的 TTTV 原型间隔区相邻基序 (PAM) 序列的限制。在这里,我们旨在放宽这些 PAM 限制,并通过将其相应的 RR 和 RVR 变体的突变与改变的 PAM 特异性相结合,生成了在哺乳动物和植物细胞中活跃的四种 Cas12a 直系同源物的新型 PAM 突变变体。选择表现出最高活性的 LbCas12a-RVRR,使用基于质粒的测定法深入表征其在哺乳动物细胞中的 PAM 偏好。LbCas12a-RVRR 的共识 PAM 序列类似于 TNTN 基序,但也包括 TACV、TTCV CTCV 和 CCCV。经发现,改良的 LbCas12a (impLbCas12a) 中的 D156R 突变以 PAM 依赖的方式进一步提高了该变体的活性。由于 impLbCas12a 和最近报道的 enAsCas12a 变体的 PAM 偏好重叠但仍有差异,它们相互补充,为基因组编辑和转录组调节应用提供了更高的效率。