摘要 - 半导体行业的技术进步的光子综合电路(图片),在单个芯片上纳入了越来越多的光子组件,以创建大型光子集成电路。我们在这里提出了一个基于单孔双插入(SPDT)架构的宽带,紧凑和低损坏的硅光子MEMS开关,其中弯曲的静电静电执行器机械地将可移动的输入波导置换,以将光学信号重新定向到两个输出波导的芯片上,从而将光学信号重新定位。光子开关已在具有自定义MEMS发行后的已建立的硅光子技术平台中制造。紧凑的足迹为65×62 µm 2,该开关的灭绝比在70 nm的光学舱面上超过23 dB,低插入损失和低于1 µs的快速响应时间,满足大型可重新可预点的光通电通行器的积分要求。[2020-0391]
I.引言全球对可持续能源解决方案的推动力是在耗尽的化石燃料储量和环境问题的驱动下,促进了电力电子产品的进步[1]。关键在这些创新中是双向DC-DC转换器,该转换器最初是为电动机驱动器而设计的,以控制速度和制动[2]。今天,他们的应用跨越了关键部门,例如直流驱动器,微电网,可再生能源存储和混合动力汽车,对于管理电力流量和在高功率情况下稳定电压至关重要[3]。但是,这些转换器在高功率应用中面临一些挑战,例如由于系统流动较大,电感器的大小增加,因此转换器的尺寸增加。另外,由于开关现象,输入电流会产生波动,因此为了克服这些问题,引入了转换器中的相互交流拓扑。此拓扑涉及多个阶段,这些阶段彼此并联以共享功率载荷[1]。
说2020年改变了一切并不是双曲线。这是一个新的平衡。covid-19已加快了技术破坏,并驱动了我们的工作,生活,购物和体验生活的方式的深刻变化。在任何地方的工作将成为我们向前发展的永久部分。直接到消费者已经爆发,永远不会放回盒子里。非接触式零售和社交贸易现在是客户体验的固有。新的供应链将出现。有价值的时间已经获得了即时性。我们现在同时生活在两个世界中 - 虚拟和物理。
摘要:风光互补发电制氢是解决风电和太阳能发电随机性强、波动性大的重要手段。本文将永磁直驱风力发电机组、光伏发电单元、电池组、电解槽组装在交流母线内,建立了风光储氢耦合发电系统数学模型及PSCAD/EMTDC中的仿真模型,设计了能量协调控制策略。经过仿真,提出的控制策略能有效降低风电和太阳能发电的弃风率,平抑风电和太阳能发电的波动,验证了建立的模型的正确性和控制策略的有效性和可行性。
在过去的几年中,对非平衡环境中纠缠增长的动力学进行了深入探索,揭示了富含等级现象的丰富结构和普遍性类别[1-5]。最近,沿着该方向的研究已从热带测量范围扩展到完整的纠缠谱(ES)[6],后者捕获了纠缠的最终结构。已经表明,ES的动力学能够区分不同复杂性[7-9]的随机统一回路,以及基础汉密尔顿基础的热化和局部融化阶段[10-13]。此外,ES中级别排斥的开始信号是操作员前线的传播,这是量子混乱的重要诊断和信息争夺[14-16]。Clifford电路的分析提供了一个清晰的例子,即ES反映由量子电路产生的状态的复杂性。这些电路可以通过经典地进行效率模拟,因此由于单质量旋转受限而无法获得通用量子计算的能力[17,18]。尽管Clifford电路可以产生与HAAR随机状态相同的最大纠缠熵的状态[19],但此类状态的ES要么是(对于稳定剂初始状态)[4,20]或Poisson分布(对于随机初始产品状态)[8]与Wigner-Dyson(Wigner-Dyson(W-D)相反,因此在Haar的状态下分布在Haar的情况下。重要的相关问题是降低和随机基准测试的问题,即相位检索,量子状态的区分性和量子通道速率误差的估计[21-28]。此外,如[6,8]所示,泊松和W-D之间的过渡与随机量子电路的出现不可逆性有关,这反过来又与以下事实有关,即由Clifford电路产生的最大纠缠侵入型的爆发与Haar随机状态的极大不同。这些任务需要构建T - 设计,即一组大门,它重现了HAAR测量的第一矩[29]。通用门的随机电路可以构建4 - 设计,基于Clifford组的随机电路可以构建3 - 设计,但未能是4 - 设计,这是一个人需要几种降低剂量的协议。众所周知,Clifford组产生了4-设计的良好近似[30]。因此,人们期望一个较小的扰动 - 克利福德(Clifford)外部的几个门 - 应该屈服于4个设计。特别是,受干扰的Clifford电路应该能够重现以通用量子电路演变的系统的纠缠熵的波动,通常需要比复制平均纠缠熵所需的更高级设计。在本文中,我们回答了一个问题,即人们需要添加到Clifford电路中的T门的密度,以将ES从泊松转换为W-D分布,这是通用量子电路的必要条件。此外,我们提出了一个关于过渡到未脱版性和更高T-设计的猜想。如图1(左图)。但是,在时间演变的第二阶段时,ES可能会发生变化。我们首先使用随机Clifford电路进化随机产品状态,直到它们的纠缠熵达到最大值。然后,我们将作用于一定数量的随机量子尺的T门插入电路中,然后继续随机使用Clifford电路演变。由于纠缠熵在插入T门之前已经饱和,因此无法进一步增加。我们提出一个问题:热力学极限中需要多少个t门才能将ES从泊松变为w- d分布?值得注意的是,我们使用各种ES统计量度的有限尺寸缩放分析,即单个T门有足够的能力毒化在热力学极限下纯Clifford电路的泊松统计。n量子位量表系统的W-D分布的偏差为E-γn t n,其中γ是一个阶的常数,n t是插入的T门的数量。这表明在有限的系统大小限制中,ES流向W-D分布
摘要:净初级生产力(NPP)可以间接反映植被的CO 2固定能力,但是由于气候变化和人类活动的影响,其时空动力学在某种程度上会发生变化。在这项研究中,NPP被用作研究中国长江盆地(YRB)重要生态系统中素食碳能力变化的指标。我们还探讨了NPP对气候变化和人类活动的反应。我们对2003年至2020年YRB生态系统内NPP的时间动力学和空间变化进行了全面分析。此外,我们还采用了剩余分析来定量评估气候因素和人类活动对NPP变化的贡献。研究发现如下:(1)在18年期间,盆地内的平均NPP为543.95 GC/m 2,显示出明显的向上趋势,增长率约为3.1 GC/m 2; (2)在NPP中表现出越来越多的趋势的区域占研究总区域的82.55%。盆地稳定性相对较高的区域占总面积的62.36%,而稳定性低的区域占2.22%,主要位于西丘阿平原的亨格登山脉; (3)NPP的改善是由人类活动和气候变化共同驱动的,人类活动对NPP的增长更为重要。特别是,贡献总计为65.39%,人类活动贡献了59.28%,气候变化贡献了40.01%。本研究提供了对人类活动和气候变化对植被生产率的贡献的客观评估,为未来的生态系统发展和环境计划提供了关键见解
4 天前 — 日本陆上自卫队鲭江驻地。收件人:鲭江特遣队第 336 会计中队指挥官 Naokuni Nakano。招标文件。主题。规格单位数量。单价。金额。水箱阀门更换。按照规格 ST。1。*详细信息清晰...
4 天前 — 零件编号:规格。按规格。所用设备的名称。尺寸。单位。品牌。手柄。到期日期等...... (8)来自国防部长保健局、国防政策局局长、国防采购、技术和后勤局局长或陆上自卫队参谋长......
2024年10月15日——(7)任何未根据竞标指南中规定的“关于排除有组织犯罪集团的承诺”作出承诺的人将不允许参加竞标。 (8)国防部卫生局局长、国防政策局局长、采购、技术和后勤局局长,或……