b'magic-角角扭曲的双层石墨烯可容纳各种有趣的物质状态,包括非常规的超导状态。但是,这种材料可以形成全新的物质状态吗?在本次演讲中,我将讨论两种不同类型的电子冷凝物的可能出现,它们超出了BCS耦合范式。这些是由典型的四元素形成的冷凝物,在电子对之间没有相干性,而是对成对对之间的相干性。通过使用大型蒙特卡洛模拟在魔术角扭曲的低能有效模型[1]中,我们表明,取决于超导地面状态,费米式四倍体置置供应量可以作为遗传相吻合。由四个破坏时间逆转对称性的电子形成,通常出现在超导过渡上方[2]。相反,如果基态是列明超导体,则我们的数值模拟表明,该系统在正常金属相中熔化之前表现出电荷4E相[3]。这表明扭曲的双层石墨烯是稳定和观察这些新型量子状态的理想平台。
摘要:数字化转型和高度自动化的检查系统使制造商能够显著优化其质量控制和保证流程。由于零件的吞吐量更高,X射线图像的评估和解释开始成为成本高昂的瓶颈。自动缺陷识别 (ADR) 和人工智能 (AI) 等先进技术有可能显著减少每个零件所需的时间。根据检查标准和要求,算法可以作为操作员的辅助或完全自动化来实现。
我们通过密度函数理论计算研究了原型Mott绝缘子NIS 2的电子结构,在这些计算中,我们明确地说明了非共线性抗铁磁序,如最近在IsoelectRonic Analog Ni(S,SE,SE)2中建立的。对于金属NIS 2在高压下,我们的计算预测了Fermi表面拓扑和体积,这与最近的量子振荡研究非常吻合。但是,我们发现,即使在环境压力下,密度功能理论也错误地预测了金属基态,类似于以前的非磁性或共线性抗抗铁磁模型。通过包括Hubbard相互作用U和现场交换J,金属相被抑制,但即使是这样的扩展模型也无法描述金属到构造的相位转变的性质,并错误地描述了绝缘阶段本身。这些结果突出了更复杂的计算方法的重要性,甚至在绝缘阶段深处,远离莫特绝缘相变。
我们引入对称保护符号问题和对称保护魔法的概念来研究物质对称保护拓扑 (SPT) 相的复杂性。具体而言,如果由对称门组成的有限深度量子电路无法将状态转换为非负实波函数或稳定器状态,我们称该状态具有对称保护符号问题或对称保护魔法。我们证明属于某些 SPT 相的状态具有这些性质,这是它们在边界处的异常对称作用的结果。例如,我们发现一维 Z 2 × Z 2 SPT 态(例如团簇态)具有对称保护符号问题,二维 Z 2 SPT 态(例如 Levin-Gu 态)具有对称保护魔法。此外,我们评论了对称保护符号问题与一维 SPT 态的计算线性质之间的关系。在附录中,我们还介绍了 SPT 相的明确装饰畴壁模型,这可能具有独立的兴趣。
完整作者列表:Qiu, Qianfeng;布兰迪斯大学化学系,化学 Shi, Yuran;布兰迪斯大学化学系,化学 Han, Grace;布兰迪斯大学,化学