顾名思义,语言的上下文表示语言表示通常是由于其编码上下文的能力而动机。这些表示形式捕获了上下文的哪些方面?我们采用了一种使用代表性相似性分析(RSA)来解决这个问题的方法。作为案例研究,我们研究了动词嵌入动词的主题的程度,代词嵌入的代词编码代词的前提,并且一个全句子表示编码句子的头部单词(由依赖性parse确定)。在所有情况下,我们都表明,伯特的上下文化嵌入反映了所研究的语言依赖性,而伯特的依赖性比编码语言较低的偏见对照的程度更大。这些结果证明了我们的方法在假设之间裁定上下文的哪个方面在语言表示中编码的能力。
摘要 我们试图复制和扩展以前的研究,以表明机器人看起来越像人类,人们就越愿意赋予它类似心智的能力并与之进行社交。42 名参与者在接受功能性神经成像的同时,与人类、人形机器人、机械机器人和计算机算法玩游戏。我们证实,代理越像人类,参与者就越会将心智归因于它们。然而,探索性分析表明,代理的感知社会性对于心智归因似乎同样重要,甚至更重要。我们的研究结果表明,在探索非人类代理的心智归因时,自上而下的知识线索可能与自下而上的刺激线索同样或可能更具影响力。虽然现在需要进一步研究来直接检验这一假设,但这些初步发现对于机器人设计以及理解和测试人们与人工智能体互动时人类社会认知的灵活性具有重要意义。
链接预测是图数据中的一个基本问题。在其最现实的环境中,问题包括预测一组断开对的节点对之间的丢失或将来的联系。图形神经网络(GNN)已成为链接预测的主要框架。基于GNN的方法将链接预测视为二进制分类问题,并处理极端类不平衡 - 真实图非常稀疏 - 通过对(随机均匀)进行抽样(随机均匀),不仅是用于培训,而且用于评估的脱节对。但是,我们表明,在平衡设置中链接预测的GNN的报告并不能转化为更现实的不平衡设置,并且在han-dling稀疏性方面,基于更简单的基于拓扑的方法通常会更好。这些发现激发了基于相似性的链接预测方法,该方法采用(1)基于节点属性的图形学习来增强拓扑启发式启发式,(2)解决类不平衡的排名损失,以及(3)负面采样方案,通过图分划分有效地选择硬训练对。实验表明,冰淇淋的表现优于现有的基于GNN的替代方案。
形态相似性网络 (MSN) 将皮质组织估计为一组具有生物学意义的宏观和微观结构层面解剖特征之间的相似性,这些相似性来自多个结构 MRI (sMRI) 序列。这些网络具有临床相关性,可预测智商的 40% 差异。但是,生成这些网络所需的序列 (T1w、T2w、DWI) 是较长的采集,在某些人群中不太可行。因此,使用 T1w sMRI 中的特征估计 MSN 对临床和发育神经科学具有吸引力。我们研究了减少特征的方法是否接近原始 MSN 模型,作为研究大脑结构的潜在工具。在一个大型、同质的健康年轻人数据集(来自人类连接组计划,HCP)中,我们扩展了之前对减少特征 MSN 的研究,不仅比较了 T1w 衍生的网络,还比较了使用较少 MR 序列生成的其他 MSN,以及它们的完整采集对应物。我们生成的 MSN 在边缘级别与使用多模态成像生成的 MSN 高度相似;但是,网络的节点拓扑不同。这些网络对广义认知能力的预测有效性有限。总体而言,当多模态成像不可用或不合适时,T1w 限制的 MSN 构建是可行的,可以提供 MSN 的适当估计,并且可以成为在未来研究中检查结果的有用方法。
定性研究和定量研究是科学研究的两种主要研究方法,这些研究方法在哲学起源,理论基础,逻辑过程和研究方法方面截然不同[1]。定量研究是一种研究方法,其中以定量术语表达问题和现象以获得研究结论,而定性研究是一种研究方法,其中事件中的相关含义是通过理解现象和分析行为和观点而获得的。同时,一些学者认为,这两种研究方法不能完全分开,但是它们是互连和统一的。本文的第一段将从定性和定量研究的定义开始,第二和第三段将以多种方式讨论定性和定量研究的优势和缺点,最后一段将分析合并定量和定性研究以及两者混合的有效性。
解释摄像机数据是自主行动系统(例如自动驾驶汽车)的关键。在现实世界环境中运行的视觉系统必须能够解释其周围环境,并需要能够处理新型情况。本文解决了开放世界的分段,即解释训练过程中未见对象的图像数据的变体。我们提出了一种新的方法,该方法可以执行确定性封闭世界的语义分割,同时可以识别新类别,而无需任何适当的培训数据。我们的方法1另外,为图像中的每个新发现的类与已知类别提供了相似性度量,这在下游任务(例如计划或映射)中可能是有用的信息。通过广泛的实验,我们表明我们的模型在已知的训练数据以及异常分割的类别上实现了最新的结果,并且可以区分不同的未知类别。
摘要 神经退行性疾病的复杂性促使人们开发人工智能方法来预测损伤和疾病进展的风险。然而,尽管这些方法取得了成功,但它们大多是黑箱性质,阻碍了它们在疾病管理中的应用。可解释的人工智能有望通过对模型及其预测进行解释来弥合这一差距,从而促进用户的理解和信任。在生物医学领域,鉴于其复杂性,可解释的人工智能方法可以从将模型与领域知识的表示(本体)联系起来中受益匪浅。本体提供了更多可解释的特征,因为它们在语义上丰富且情境化,因此最终用户可以更好地理解;它们还对现有知识进行建模,从而支持探究给定的人工智能模型结果如何与现有科学知识相吻合。我们提出了一种可解释性方法,利用丰富的生物医学本体全景来构建基于语义相似性的解释,将患者数据和人工智能预测情境化。这些解释反映了人类的基本解释机制——相似性——同时解决了数据复杂性、异质性和规模的挑战。
图 5 同侪影响敏感性和冒险行为对伏隔核 (NACC) 神经相似性的回归。为自己和最好的朋友做决定之间的 NACC 神经相似性与青少年的 (a) 同侪影响敏感性和 (b) 冒险行为呈正相关。为自己和父母做决定之间的 NACC 神经相似性与青少年的 (c) 同侪影响敏感性或 (d) 冒险行为无显著相关性。显示了关系的 95% 置信区间 (CI)。所有报告的 p 值均经过 Bonferroni 调整。
摘要 - 在大规模部署之前,必须调查和评估自动驾驶汽车(AV)的安全性能。实际上,特定AV的测试场景数量受到严格限制的预算和时间受到严格限制。由于严格限制的测试施加的限制,现有的测试方法通常会导致明显的不确定性或难以量化评估结果。在本文中,我们首次提出了“少数测试”(FST)问题,并提出了一个系统的框架来应对这一挑战。为了减轻小型测试方案集中固有的可观不确定性,我们将FST问题作为优化问题,并根据社区覆盖范围和相似性搜索测试方案集。具体而言,在AVS设置的测试方案更好的概括能力的指导下,我们动态调整了该集合以及每个测试方案对基于覆盖范围的评估结果的贡献,利用了替代模型(SMS)的先前信息。通过SMS上的某些假设,建立了评估误差的理论上上限,以验证给定数量有限的测试中评估准确性的充分性。与常规测试方法相比,剪切方案的实验结果表明,我们方法的评估误差和方差显着降低,尤其是对于对场景数量严格限制的情况。索引术语 - 射击测试,自动驾驶汽车,SCENARIO覆盖范围,测试方案集
摘要 网络神经科学的图形信号处理方面的进步为整合大脑结构和功能提供了一条独特的途径,目的是揭示大脑在系统层面的一些组织原则。在这个方向上,我们开发了一个监督图形表示学习框架,通过图形编码器-解码器系统对大脑结构连接 (SC) 和功能连接 (FC) 之间的关系进行建模。具体来说,我们提出了一种配备图形卷积编码器的暹罗网络架构,以学习图形(即主题)级嵌入,以保留大脑网络之间与应用相关的相似性度量。这样,我们有效地增加了训练样本的数量,并通过规定的目标图形级距离带来了灵活性,可以合并额外的先验信息。虽然有关大脑结构-功能耦合的信息是通过从 SC 重建大脑 FC 隐式提取的,但我们的模型还设法学习保留输入图之间相似性的表示。学习到的表示的卓越判别能力在包括主题分类和可视化在内的下游任务中得到了证明。总而言之,这项工作通过利用度量数据分析的标准工具,倡导利用学习到的图形级、相似性保留嵌入进行脑网络分析的前景。索引术语 Ð脑连接组学、图形表示学习、孪生网络、图形卷积网络。