疾病之间的类似分子和遗传畸变会导致在生物学上相似的疾病中发现共同重要的治疗选择。肿瘤学家密切关注几种激素依赖性癌症,并鉴定出其DNA修复途径异常中的显着病理和分子相似性。尽管同源重组(HR)途径中的表现对癌症的进展起着重要作用,但可能需要其他需要仔细研究的DNA-REPAIR途径。在本文中,通过生物标志物驱动的药物重新使用模型,我们确定了基于常见的特定生物标记物的DNA替代定义的乳腺癌和前列腺癌患者的几种潜在药物候选者,并且对肿瘤的肿瘤不论起源于肿瘤。归一化的折扣累积增益(NDCG)和灵敏度分析用于评估药物重新利用模型的性能。我们的结果表明,在具有高治疗作用的药物中,米托氨基酮和染料木黄酮是疾病引起的基因表达变化(FDR调整后的PROSTATE癌症= 1.225E-4和8.195E-8)引起的基因表达变化的药物之一。提议的多癌治疗框架适用于癌症具有常见特异性生物标志物的患者,有可能通过通过多种癌症的整合并靶向对机器人特异性治疗反应良好的患者来识别有希望的候选药物。
摘要:相似的药物分子通常具有相似的特性和活性。因此,量化分子相似性对于药物发现和优化至关重要。在这里,我回顾了我所在跨学科网络 NCCR TransCure 内开发的使用分子相似性测量的计算方法,该网络研究离子通道和膜转运蛋白的生理学、结构生物学和药理学。我们设计了一种 3D 分子形状和药效团比较算法,通过骨架跳跃优化弱和非选择性抑制剂,并发现了离子通道 TRPV6 和 TRPM4、内源性大麻素膜转运以及二价金属转运蛋白 DMT1 和 ZIP8 的强效和选择性抑制剂。我们通过将不同分子指纹的分子相似性搜索与 ChEMBL 数据库中的靶标注释化合物相结合来预测脱靶效应。最后,我们创建了反映分子相似性的交互式化学空间图,以方便筛选化合物的选择和筛选结果的分析。这些不同的工具可在线获取,网址为 https://gdb.unibe.ch/tools/。
摘要:相似的药物分子通常具有相似的特性和活性。因此,量化分子相似性对于药物发现和优化至关重要。在这里,我回顾了我所在跨学科网络 NCCR TransCure 内开发的使用分子相似性测量的计算方法,该网络研究离子通道和膜转运蛋白的生理学、结构生物学和药理学。我们设计了一种 3D 分子形状和药效团比较算法,通过骨架跳跃优化弱和非选择性抑制剂,并发现了离子通道 TRPV6 和 TRPM4、内源性大麻素膜转运以及二价金属转运蛋白 DMT1 和 ZIP8 的强效和选择性抑制剂。我们通过将不同分子指纹的分子相似性搜索与 ChEMBL 数据库中的靶标注释化合物相结合来预测脱靶效应。最后,我们创建了反映分子相似性的交互式化学空间图,以方便筛选化合物的选择和筛选结果的分析。这些不同的工具可在线获取,网址为 https://gdb.unibe.ch/tools/。
摘要 计算平面图相似度的计算方法可以帮助建筑师在大型数据集中探索平面图,以避免重复设计并搜索满足其需求的现有平面图。最近,LayoutGMN [PLF ∗ 21] 在计算平面图之间的相似度得分方面提供了最先进的性能。然而,LayoutGMN 的高计算成本使其不适合上述应用。在本文中,我们通过将平面图投影到公共低维(例如三维)数据空间中,显著减少了查询 LayoutGMN 计算结果所需的时间。投影是通过优化平面图的坐标来完成的,其中欧几里得距离模仿 LayoutGMN 最初计算的相似度得分。定量和定性评估表明,我们的结果与原始 LayoutGMN 相似度得分的分布相匹配。用户研究表明我们的相似度结果很大程度上符合人类的期望。
基于影像特征将动物脑作为跨物种研究的工具,可为揭示人类大脑的综合分析提供更多潜力。先前的研究表明,人类布罗德曼5区(BA5)和恒河猴的PE为同源区域,均参与手臂运动中触觉过程中的深度和方向信息处理。但最近的研究表明,BA5与PE并不同源,根据细胞构架,BA5被细分为三个不同的亚区域,PE可细分为PEl、PEla和PEm,BA5与PE之间各亚区域之间的物种同源关系尚不明确。同时,基于白质纤维束解剖连接对PE的细分需要更多的验证。本研究依据白质纤维束解剖连接对恒河猴的PE进行了细分。基于概率纤维追踪技术定义前侧和背侧两个PE亚区,最后针对BA5和PE亚区绘制具有预定义同源靶区的连通性指纹,揭示结构和功能特征,并给出识别出的同源对应关系。
gdevreede@usf.edu 摘要 随着人工智能技术的兴起和在组织内的整合,我们对这项技术对个人的影响的理解仍然有限。尽管信息系统使用文献为组织提供了重要的指导,以提高员工使用新技术的意愿,但考虑到人类和人工智能代理之间不断发展的社会互动,先前信息系统使用研究的功利主义观点限制了其应用。我们通过实施社会观点来理解人工智能代理对个人感知和行为的影响,为信息系统使用文献做出了贡献。通过关注人工智能代理的主要设计维度,我们提出了一个利用社会心理学理论来解释这些设计维度对个人影响的框架。具体来说,我们基于相似性吸引理论提出了一个人工智能相似性-连续性模型,旨在解释与人工智能代理的相似性如何影响个人的 IT 身份和继续使用它的意图。通过在线头脑风暴实验,我们发现与人工智能代理的相似性确实对 IT 身份和继续与人工智能代理合作的意图产生了积极影响。
形态相似性网络 (MSN) 将皮质组织估计为一组具有生物学意义的宏观和微观结构层面解剖特征之间的相似性,这些相似性来自多个结构 MRI (sMRI) 序列。这些网络具有临床相关性,可预测智商的 40% 差异。但是,生成这些网络所需的序列 (T1w、T2w、DWI) 是较长的采集,在某些人群中不太可行。因此,使用 T1w sMRI 中的特征估计 MSN 对临床和发育神经科学具有吸引力。我们研究了减少特征的方法是否接近原始 MSN 模型,作为研究大脑结构的潜在工具。在一个大型、同质的健康年轻人数据集(来自人类连接组计划,HCP)中,我们扩展了之前对减少特征 MSN 的研究,不仅比较了 T1w 衍生的网络,还比较了使用较少 MR 序列生成的其他 MSN,以及它们的完整采集对应物。我们生成的 MSN 在边缘级别与使用多模态成像生成的 MSN 高度相似;但是,网络的节点拓扑不同。这些网络对广义认知能力的预测有效性有限。总体而言,当多模态成像不可用或不合适时,T1w 限制的 MSN 构建是可行的,可以提供 MSN 的适当估计,并且可以成为在未来研究中检查结果的有用方法。
图 1 社交互动 fMRI 任务示意图 (a)。参与者会得到半秒钟的提示,表明他们是要回答互动伙伴 (peer) 提出的问题,还是回答计算机提出的关于故事人物 (character) 的问题。提示持续 3.5 秒,需要使用关于目标的心理状态信息 (mental),或非心理、物理信息 (nonmental)。这产生了一个完全的受试者内、2 (同伴/角色) 2 (心理/非心理) 设计 (b)。PM,同伴心理;PNM,同伴非心理;CM,角色心理,CNM,角色非心理。模型 1 = 互动涉及心理化 (c),模型 2 = 互动模型 (d),模型 3 = 心理化模型 (e)
摘要 预测药物-靶标相互作用 (DTI) 已成为一个重要的生物信息学问题,因为它是药物重新定位的关键和初步阶段之一。因此,科学家们正在尝试开发更准确的计算方法来预测药物-靶标相互作用。这些方法通常基于机器学习或推荐系统,并使用生物和化学信息来提高预测的准确性。在这些方法的背景下,有一个假设,即具有相似化学结构的药物具有相似的靶标。因此,药物之间的相似性作为化学信息被添加到计算方法中以改进预测结果。这里出现的问题是这种说法是否真的正确?如果是这样,应该使用什么方法来计算药物-药物化学结构的相似性?我们是否会从我们使用的任何 DTI 预测方法中获得同样的改进?在这里,我们研究了通过将药物-药物化学结构相似性添加到问题中可以实现的改进量。为此,我们考虑了不同类型的真实化学相似性、随机药物相似性、四个黄金标准数据集和四种最先进的方法。我们的结果表明,数据的类型和大小、用于预测相互作用的方法以及用于计算药物间化学相似性的算法都很重要,不能轻易地说增加药物相似性可以显著改善结果。因此,我们的结果可以为想要改进机器学习方法的科学家提供一份清单。
摘要 神经退行性疾病的复杂性促使人们开发人工智能方法来预测损伤和疾病进展的风险。然而,尽管这些方法取得了成功,但它们大多是黑箱性质,阻碍了它们在疾病管理中的应用。可解释的人工智能有望通过对模型及其预测进行解释来弥合这一差距,从而促进用户的理解和信任。在生物医学领域,鉴于其复杂性,可解释的人工智能方法可以从将模型与领域知识的表示(本体)联系起来中受益匪浅。本体提供了更多可解释的特征,因为它们在语义上丰富且情境化,因此最终用户可以更好地理解;它们还对现有知识进行建模,从而支持探究给定的人工智能模型结果如何与现有科学知识相吻合。我们提出了一种可解释性方法,利用丰富的生物医学本体全景来构建基于语义相似性的解释,将患者数据和人工智能预测情境化。这些解释反映了人类的基本解释机制——相似性——同时解决了数据复杂性、异质性和规模的挑战。