I.简介阶段同步是5G新无线电(NR)毫米波(MMWave)通信系统性能的关键组成部分。准确的相位同步对于保持通信的可靠性和效率至关重要,尤其是在MMWave频段内,通常从24 GHz到100 GHz。这些高频带实现了前所未有的数据速率和带宽,这对于满足对高速无线连接的需求不断增长至关重要。5G-NR的演变在很大程度上依赖于MMWave技术来提供增强的移动宽带服务,超可靠的低潜伏期通信和大规模的机器型通信,从而解决了传统频带的容量限制[1-3]。但是,5G-NR MMWAVE网络的部署伴随着重大挑战,尤其是在相位误差的准确估计和补偿中。这些错误来自各种来源,包括振荡器缺陷,通道效应和硬件障碍,所有这些都会引起常见相位误差(CPE)。CPE估计和补偿对于确保MMWave系统中可靠的通信至关重要,因为即使是较小的相位偏差也会大大降低系统性能,从而导致错误率提高和信号质量降低[4]。
晶体学相工程在精确控制材料的物理和电子特性中起着重要的作用。In two-dimensional transition metal dichalcogenides (2D TMDs), phase engineering using chemical lithiation with the organometallization agent n -butyllithium ( n -BuLi), to convert the semiconducting 2H (trigonal) to the metallic 1T (octahedral) phase, has been widely explored for applications in areas such as transistors, catalysis and batteries 1–15 .尽管可以在环境温度和压力下进行这种化学期工程,但对基本机制的理解很少,并且N -Buli的使用引起了显着的安全问题。在这里,我们将单型相位从2H到1T相的典型相跃迁到1T和双层2D TMD中,发现该反应可以通过455 nm处的低功率照明来加速六个数量级。我们确定上述差距照明通过光电氧化过程改善了限制速率的电荷转移动力学。我们使用这种方法来实现TMD的快速和高质量的相位工程,并证明可以利用该方法将任意相模式用衍射限制的边缘分辨率刻在几层TMD中。最后,我们用更安全的多环芳族芳族细胞岩剂代替了热情的n -buli,并表明它们的性能超过了n -buli作为相变剂的性能。我们的工作为探索电化学过程的原位表征开辟了机会,并为通过Photoredox阶段工程提供可持续扩展的材料和设备铺平了道路。
波前塑形技术的最新进步促进了各种培养基中复杂结构光的传播与轨道角动量(OAM)的研究。在其近后传播期间向拉瓜尔 - 高斯(LG)束引入螺旋相调制,这是由于培养基折射率随时间变化的负梯度的促进,从而导致相位扭曲速率显着提高,从而有效地观察到了OAM相位抑制。这种方法对培养基折射率(〜10-6)的最小变化也具有显着的敏感性。OAM的相位记忆被揭示为扭曲光保留最初的螺旋相的能力,甚至通过浑浊的组织样散射培养基传播。结果证实了在生物医学应用中利用OAM光的迷人机会,例如,例如通过生物组织和其他光学致密培养基的非侵入性透射式葡萄糖诊断和光学通信。
量子电路合成描述了将任意酉操作转换为固定通用门集的门序列的过程,该门集通常由给定硬件平台的原生操作定义。大多数当前合成算法旨在合成一组单量子比特旋转和一个额外的纠缠双量子比特门,例如 CX、CZ 或 Mølmer-Sørensen 门。然而,随着中性原子硬件的出现及其对两个以上量子比特门的原生支持,针对这些新门集量身定制的合成方法变得必要。在这项工作中,我们提出了一种使用 ZX 演算合成(多)控制相位门的方法。通过将量子电路表示为图形状的 ZX 图,可以利用对角门的独特图形结构来识别某些量子电路中固有存在的多控制相位门,即使原始电路中没有明确定义。我们在各种基准电路上评估了该方法,并将它们与标准 Qiskit 综合进行比较,比较了其在具有多控制门原生支持的中性原子硬件上的电路执行时间。我们的结果显示了当前最先进硬件的可能优势,并代表了第一个支持任意大小多控制相位门的精确综合算法。
*通讯作者:张顺平,武汉大学物理科学与技术学院、人工微纳米结构教育部重点实验室,武汉 430072;武汉量子技术研究所,武汉 430206,电子邮件:spzhang@whu.edu.cn。 https://orcid.org/0000-0002-8491-0903 崔开波、张天柱,武汉大学物理科学与技术学院、人工微纳米结构教育部重点实验室,武汉 430072 饶涛、张向辉,湖北大学微电子学院、湖北省微纳电子材料与器件重点实验室,武汉 430062 徐红星,武汉大学物理科学与技术学院、人工微纳米结构教育部重点实验室,武汉 430072;武汉量子技术研究所,武汉 430206;武汉大学微电子学院,武汉 430072;河南省科学院,郑州 450046
识别物质的相位具有相当大的挑战性,特别是在量子理论领域,因为基态的复杂性似乎随着系统规模的增大而呈指数增长。量子多体系统表现出一系列跨越不同相位的复杂纠缠结构。尽管已经有大量研究探索了量子相变和量子纠缠之间的关系,但在它们之间建立直接、实用的联系仍然是一个关键挑战。在这项工作中,我们提出了一种新颖、高效的量子相变分类器,利用强化学习优化的变分量子电路进行解纠缠。我们证明了该方法对横向场伊辛模型 (TFIM) 和 XXZ 模型中量子相变的有效性。此外,我们观察到该算法能够学习与 TFIM 中的纠缠结构有关的 Kramers-Wannier 对偶。我们的方法不仅可以根据解缠结电路的性能识别相变,而且还具有出色的可扩展性,有助于将其应用于更大、更复杂的量子系统。这项研究揭示了通过量子多体系统中固有的纠缠结构来表征量子相。
其中 f ( t ) 是包络,ν 是载波频率,φ 是相位。驱动脉冲用于对量子位执行逻辑运算,其持续时间、幅度和相位决定了所执行的运算类型。在本文中,我们重点研究受相位噪声影响的 N π − 脉冲的生成,以实现 N NOT 非理想门。这里使用持续时间为 50 ns、幅度约为 0.5 au、载波频率为 6 GHz 的矩形脉冲。π − 脉冲强制绕布洛赫球的特定轴(在我们的例子中是 X 轴)旋转 180 度,从而导致量子位的状态反转,见图 1(a)。如果 π − 脉冲受到相位噪声的影响,并且量子位在基本状态 | 0 ⟩ 初始化,则最终状态将不是 | 1 ⟩ ,但由于绕 X、Y 和 Z 轴的不必要的旋转,状态有所不同,见图 1(b)。相位噪声已直接应用于脉冲包络分量,这相当于将其应用于载波相位。
本文研究了模拟玻璃骨折中相位模型的挑战和潜力。相位场方法是断裂建模的变分方法,将裂纹视为扩散的界面,从而消除了对显式裂纹跟踪的需求。这项研究探索了其对玻璃的应用,玻璃具有独特的裂缝特性,由于其无定形结构和脆性。我们使用ABAQUS实施了AT1相位模型,并针对各种实验设置进行了验证,包括微型计算机和微柱测试,L形样品以及动态的拉伸裂缝场景。结果表明,与实验观察结果有很强的比对,可以准确捕获复杂的裂纹模式和动态断裂行为。关键参数(例如临界能量释放速率和内部长度尺度)显示出显着影响断裂模拟结果。虽然相位方法在推进玻璃断裂力学方面表现出希望,但挑战仍然存在于参数敏感性和整合更复杂的材料模型中。本研究强调了该方法的当前功能,并指出了未来的研究方向,以提高其在玻璃断裂模拟中的适用性和效率。
摘要:随着当今社会的快速发展,交通环境变得越来越复杂。作为智能车辆的重要组成部分,轨迹跟踪因其稳定性和安全性引起了极大的关注。在高速工作等极端工作条件下,准确性和不稳定性很容易发生。在本文中,为分布式驱动车辆提出了一种轨迹跟踪控制策略,以确保在高速和低固定限制条件下进行横向稳定性。模型预测控制器(MPC)用于控制前轮角度,并且设计了粒子群优化(PSO)算法以适应MPC控制参数。滑动模式控制器控制后轮角度,并且通过分析β-来判断车辆不稳定性度。β相平面。在本文中设计了不同不稳定性度的控制器。最后,扭矩分隔器的设计目的是考虑驱动防滑。设计的控制器通过CARSIM和MATLAB-SIMULINK共模拟验证。结果表明,本文设计的轨迹跟踪控制器有效地提高了在确保稳定性的前提下的跟踪精度。