上下文。准确的模拟晕圈目录是用于开发和验证宇宙学推断管道的必不可少的数据产品。生成模拟目录的一个主要挑战是对光环或星系偏置进行建模,这是从物质密度到暗物质光环或可观察的星系的映射。为此,n个体代码生成了最先进的目录。然而,为大容量的大量N体模拟产生了大量的N体模拟,尤其是在包括磁水动力学的情况下,需要大量的计算时间。目标。我们介绍和基准测试了一个可区分和物理信息的神经网络,该网络可以生成与从完整的N体代码获得的模拟光环目录相当的质量。模型设计在训练程序和大型模拟目录套房的生产上具有计算有效的效率。方法。我们提出了一个神经网络,仅依靠18至34个可训练的参数,该参数可从暗物质过度密度场中产生光环目录。通过将首先原理动机的对称性纳入我们的模型体系结构来实现网络权重的减少。我们使用不同分辨率,红移和大型垃圾箱的仅黑色n体模拟训练了我们的模型。我们使用不同的n点相关函数将最终模拟目录与N体晕目录进行了比较,从而验证了最终模拟目录。结果。此外,我们发现该网络可以在近似密度字段上进行培训,以进一步降低计算成本。我们的模型生成了与参考模拟一致的模拟光环目录,这表明该新型网络是生成模拟数据的一种有希望的方法,该数据由于其计算效率而即将进行的宽场调查。我们还介绍了如何解释训练有素的网络参数,以洞悉结构形成的物理。最后,我们讨论了我们的模型的当前局限性,以及从这项研究中可以明显看出的近似Halo模拟产生的一般要求和陷阱。
摘要:纠缠熵或von Neumann熵,量化量子状态的不确定性。对于弯曲空间中的量子场,对于固定的背景几何形状,量子场理论自由度的纠缠熵被很好地确定。在本文中,我们提出了通过包括动力学重力来对量子场理论纠缠熵的概括。通过副本计算的分析延续,定义了称为有效的熵及其Renyi熵概括的广义数量。将复制的理论定义为具有原始边界条件的多个副本的重力路径积分,在我们正在研究的区域边界处具有共二维 - 2 brane。我们讨论了以规格不变的方式定义区域的不同方法,并表明有效的熵满足了量子极端表面公式。当量子场带有显着量的纠缠时,量子极端表面可以具有拓扑过渡,然后出现纠缠岛区域。我们的结果概括了全息熵的Hubeny-rangamani-takayanagi公式(带有量子校正)到没有渐近ADS边界的一般几何形状上,并为解决诸如蒸发黑孔的页面曲线等问题提供了更坚实的框架,这些问题是散布射精的散布液体的。我们将公式应用于两个示例系统,一个封闭的二维宇宙和一个四维最大扩展的Schwarzchild黑洞。我们研究了封闭的宇宙(没有空间边界),并讨论它与开放宇宙的关系。我们在随机张量网络模型中讨论了有效熵的类似物,该模型在一般动力学几何形状中提供了对量子信息属性的更具体理解。我们表明,在没有大型边界的情况下,例如在ADS空间情况下,至关重要的是要引入Ancilla,以正确地表征量子状态和随机张量网络中的相关函数,以便介绍将Ancilla融合到原始系统。是超密度运算符形式主义,我们使用Ancilla研究该系统,并显示纠缠岛中的量子信息如何可以在依赖于状态的和观察者依赖性图中重建。
物质的电动力描述需要构成方程,该方程将诱导的电荷ρ和半导体的电流密度j(或等效地为极化p,j = − p and p and p and p = - d iv p)to the elemagnetic finection e,b。在这方面的通用模型是Lorentz -oscillator和线性光学的Drude -Fre -Fre -Farrier模型。另一方面,对物质的非线性性质的描述主要使用电力轨道的功率序列扩展,但是在谐振或几乎谐振条件下,这种膨胀是不合适的。在某些情况下,新解决方案甚至可能“自发”在临界光线之上,并且可能导致第二次谐波产生,尽管不存在功率扩展(包括相对于光场的阶段)。因此,对半导体光学器件的现实描述需要适当地依赖光线,包括价 - 导导带持续状态,激子效应以及频带 - 效力动力学。这些现象是通过半导体bloch - 方程(SBE)始终描述的,而nowa-days成为半导体光学的标准模型。1在这种方法中,半导体对量子进行处理,从而导致一组极化和电子/孔分布函数的耦合的非线性差异方程(以此处将省略的高阶相关函数补充)。极化在(经典)麦克斯韦方程中充当源项。从这个意义上讲,SBE是一种半经典理论。[24K1](卷2)。它成功涵盖了线性和非线性现象,例如泵 - 探针,四波混合或光子 - 回声实验,如参考文献中所述。SBE在推导和应用方面具有相当大的复杂性,因此,我们将仅给出其派生的“行人版本”和一些选定的应用程序。详细信息可以在Haug和Koch的TexBook [94H1]中找到。为SBE的见面介绍,例如Sch'afer和Wegener的书[02S1]。我们以三个步骤处理该问题,如图1。(a)首先,我们研究两个级别的共鸣附近原子的动力学,并得出光学Bloch方程。在此公式中,阻尼
相应的 Bethe 方程;后者通常难以求解。因此,尽管这些模型是“精确可解的”,但通常仍需要付出大量努力来明确计算感兴趣的物理量。量子计算机有望解决各种迄今难以解决的问题 [5,6]。这些问题包括分子和固态环境中多体系统的量子模拟 [7,8]。人们很自然地会问,量子计算机是否也能帮助解决计算量子可积模型感兴趣的物理量的问题。虽然求解 Bethe 方程仍然是一个有趣的开放性挑战 [9],但最近一个重要的进展是发现了一种用于构造精确特征态的有效量子算法 [10]。该算法可能用于明确计算相关函数,否则这是无法实现的。可积模型还可以通过为量子模拟器提供试验台来影响量子计算。尽管人们正在大力开发近期算法,如变分量子特征值求解器 (VQE) [ 11 , 12 ],以解决多体问题,但目前尚不清楚 VQE 是否能够在近期硬件上实现量子优势。另一方面,在容错量子计算机上获得一般模拟问题的量子优势被认为在量子资源方面成本极其昂贵 [ 13 – 15 ]。在嘈杂的中型量子时代 [ 16 ] 之后,早期量子计算机的可积模型的另一个好处是,它们的经典可解量可用于验证和确认目的。因此,研究特殊类别的问题(如可积模型)以更早地展示量子优势是很自然的。关键的第一步是找到解决这类问题的量子算法并量化所需的资源。 [ 10 ] 中的算法适用于闭式自旋 1/2 XXZ 自旋链,它是 Bethe [ 1 ] 求解的模型的各向异性版本 [ 17 ],是具有周期性边界条件的量子可积模型的典型例子。将量子可积性扩展到具有开放边界条件的模型也很有趣且不平凡,参见 [ 18 – 21 ] 和相关参考文献。在本文中,我们制定了一个量子算法,用于构造具有对角边界磁场的开放自旋 1/2 XXZ 自旋链的精确本征态,这是具有开放边界条件的量子可积模型的典型例子。长度为 L 的链的(铁磁)哈密顿量 H 由下式给出
其中α是定量时空的每个模型的常数特异性[14 - 17]。此外,全息原理[18-20]和随之而来的协变熵结合[21],这意味着这些距离波动在给定的时空体积中相关。此外,Verlinde和Zurek [22,23]和'T Hooft [24,25]的工作表明,这些相关性可能会延伸到横向上的宏观距离(或等效地,沿着因果钻石的边界[26])。这些理论方法评估了量子波动及其在Hori-Zons上的相关性,并通过将因果钻石的边界确定为视野(特别是Rindler Hori-Zons),可以描述量子时空波动的横向相关性。,Verlinde和Zurek假设热力学特性所规定的能量波动会导致公制在台上通过牛顿电势而与横向相关性的视频波动[22]。'thooft提出,如果地平线的量子波动,黑洞可以服从单位性(例如霍金辐射)是隔离纠缠的[27]。这些理论为波动的垂直两点相关函数提供了具体而几乎相同的预测,作为球形谐波的扩展[22,24,28]。以这种方式得出的相关性分解为球形谐波y m y y m在低L模式中的大部分功能,这激发了以下预测,如上所述,横向相关性在宏观角度分离上延伸到宏观的角度分离。此外,已经提出,CMB中温度波动的角功率谱是这种基本分解在通货膨胀范围上量子波动的球形谐波中的基本分解的表现[29]。重要的是,宏观横向相关性意味着波动在激光束或望远镜孔径的典型直径上是连贯的。如果是这种情况,则通过评估远处对象图像的模糊或退化[16,30]的模糊或降解来设置在量子时空波动上[16,30]。鉴于距离量表的量子时空波动与宏观距离上的相关性和相关性,激光干涉仪对它们具有独特的敏感。因此,对这些波动的最严格约束是由现有的干涉量实验设置的。Ligo,处女座和Kagra协作使用的引力波(GW)干涉仪的设计[31]降低了其对量子时空幻影的潜在敏感性。这是因为它们在手臂中使用Fabry – p´errot腔(或折叠臂,如Geo 600中),这意味着单个光子多次横穿相同的距离。此外,这些仪器的输出的频率低于光线交叉频率。这会导致从单个光线中积累的波动中随机检测到的信号与随后的交叉点的信号平均,从而消除了效果[17]。一个旨在检测量子时空波动的干涉测量实验是Fermilab螺旋表,它由两个相同的共同阶层和重生40 m
晶格热导率(κL)是晶体固体的一个重要特性,对热管理、能量转换和热障涂层具有重要意义。基于密度泛函理论(DFT)的计算工具的进步使得能够有效利用基于声子准粒子的方法来揭示各种晶体系统的潜在物理原理。虽然高阶非谐性通常用于解释晶体中的异常传热行为,但DFT中的交换关联(XC)函数对描述非谐性的影响却在很大程度上被忽视了。XC 函数对于确定 DFT 描述固体和分子中电子/离子之间相互作用的准确性至关重要。然而,固体物理中大多数XC泛函主要侧重于计算只需要原子偏离平衡态很小位移(在谐波近似内)的性质,如谐波声子和弹性常数,而非谐性则涉及较大的原子位移。因此,对于XC泛函来说,在非谐性水平上准确描述原子相互作用更具挑战性。本研究采用多种XC泛函,如局部密度近似(LDA)、Perdew-Burke-Ernzerhof(PBE)、固体和表面的修正PBE(PBEsol)、优化的B86b泛函(optB86b)、修正的Tao-Perdew-Staroverov-Scuseria(revTPSS)、强约束和适当范数泛函(SCAN)、正则化SCAN(rSCAN)和正则化恢复SCAN(r2SCAN)以及不同的扰动阶数,包括谐波近似内的声子(HA)加三声子散射(HA+3ph)、用自洽声子理论计算的声子(SCPH)加三声子散射(SCPH+3ph)、SCPH声子加三声子和四声子散射,系统地研究了16种具有岩盐和闪锌矿结构的二元化合物的室温κL。 (SCPH+3,4ph)。结果表明,XC 函数与扰动阶表现出强纠缠,计算出的 κ L 的平均相对绝对误差 (MRAE) 受 XC 函数和扰动阶的强烈影响,导致误差抵消或放大。在 HA+3ph 级别的 revTPSS (rSCAN)、在 SCPH+3ph 级别的 SCAN (r 2 SCAN) 和在 SCPH+3,4ph 级别的 PBEsol (rSCAN) 中实现了最小 (最大) MRAE。在这些函数中,PBEsol 在最高扰动阶下表现出最高的精度。SCAN 相关函数表现出中等精度,但存在数值不稳定性且计算成本高的问题。此外,所有 XC 函数都识别出了四次非谐性对岩盐和闪锌矿结构中 κ L 的不同影响,这归因于这两种结构中不同的晶格非谐性。这些发现对于选择合适的泛函来描述非谐声子提供了有价值的参考,并为高阶力常数计算提供了见解,有助于开发更精确的固体材料XC泛函。
将曲面上扁平线束的最小浸入与临界特征值度量联系起来 Santiago Adams 导师:Antoine Song 在现有文献中,第一个特征值在曲面上临界的度量与该曲面在任意维球面中的最小浸入之间存在着密切的联系。我们知道,对于具有临界度量的曲面,存在一组拉普拉斯算子的特征函数,它们定义了进入球面的最小浸入。我们旨在使用局部参数将该理论扩展到扁平线束特征截面的情况。也就是说,给定一个第一个特征值在线束上临界的度量,我们旨在使用其特征截面的升力来定义其通用覆盖在球面中的最小浸入,并更好地理解是否存在原始曲面进入球面的最小浸入。伊辛铁磁体在经典和量子极限下的热力学性质 Sophia Adams 导师:Thomas Rosenbaum 和 Daniel Silevitch 该项目旨在探测模型伊辛铁磁体 LiHoF 4 在经典和量子相变中的热力学性质。经典跃迁发生在临界温度 1.53 K 和零磁场下,而量子跃迁发生在零温度极限下 50 kOe 量级的临界横向磁场下。我们将使用比热数据来比较两个跃迁的临界指数及其之间的交叉。 一种使用基于分类器的生成器生成和预筛选蛋白质以确定结合亲和力的新方法 Victoria Adams 导师:Matt Thomson 和 Alec Lourenco 由于当前方法筛选蛋白质结合功效的速度和规模,测试新的工程结合蛋白设计非常无效。定量而不是定性筛选新蛋白质将进一步提高效率。 Thomson 实验室开发了一种高通量筛选方法,用于收集有关结合蛋白的信息并实现蛋白质设计。在我的项目中,我致力于开发一种使用蛋白质语言模型预筛选生成蛋白质的新方法。应用现有的蛋白质大型语言模型 (pLLM),例如进化尺度模型 (ESM) 和 AlphaFold 2 & 3,我正在研究一种生成蛋白质然后预筛选其结合亲和力的方法。我还有机会学习如何使用实验室的高通量筛选分析来实验性地测试蛋白质设计。到目前为止,我还没有完全开发的方法/模型,但我有一个需要微调的基本分类器,并且需要一个仍需要指定最佳参数的生成器。我希望能够完成这些编程改进,并可能能够在夏季结束前通过应用高通量筛选来测试它们。来自路径积分的时间类纠缠 Zofia Adamska 导师:John Preskill 和 Alexey Milekhin 大多数量子力学形式主义都从不同的角度来看待空间和时间,这从相对论物理学的角度来看似乎是不自然的。为了解决这种不对称性,我们提出了一种时空密度矩阵的新定义,该定义源自路径积分方法,以更好地分析时空中的量子信息。我们的动机基于相对论量子场论中的观察,其中该密度矩阵的 Renyi 熵与通过从空间类分离到时间类分离的解析延续得出的结果完全一致。我们演示了如何使用这个密度矩阵来限制时空相关函数,并表明我们的界限比其他方法更紧并且遵循 Lieb-Robinson 界限。此外,我们在量子计算机上测试了这个时空密度矩阵对单量子比特系统的预测。使用我们的方法计算的时空纠缠构成了热化的新探针,并且可以为选择用于量子多体系统时间演化的有效张量网络假设提供启示。使用合成细胞建立病毒宿主相互作用的最小模型 Layla Adeli 导师:Richard Murray 和 Zach Martinez 利用最小模型研究合成细胞病毒感染的潜力使其成为研究尚未得到充分研究的病原体的首选。为了设计 PhiX174 噬菌体的合成宿主,我们尝试将 PhiX174 识别的脂多糖 (LPS) 整合到脂质体膜中,以潜在地封装无细胞转录、翻译和复制系统 (PURE Rep)。此外,设计为在脂质体内由 PhiX174 基因触发时发出荧光的立足点开关可以检测 PhiX174 基因组的 DNA 转录——我们目前的工作包括设计一种具有高效性的开关。我们已经成功生产出脂质体,并正在努力整合检测机制我们在量子计算机上测试该时空密度矩阵对单量子比特系统的预测。使用我们的方法计算的时空纠缠构成了一种新的热化探测,可以为选择一种有效的张量网络假设来研究量子多体系统的时间演化。使用合成细胞建立病毒宿主相互作用的最小模型 Layla Adeli 导师:Richard Murray 和 Zach Martinez 利用最小模型研究合成细胞病毒感染的潜力使合成细胞成为研究尚未得到充分研究的病原体的首选。为了设计 PhiX174 噬菌体的合成宿主,我们尝试将 PhiX174 识别的脂多糖 (LPS) 整合到脂质体膜中,以潜在地封装无细胞的转录、翻译和复制系统 (PURE Rep)。此外,当脂质体中的 PhiX174 基因触发时,设计为发出荧光的立足点开关可以检测 PhiX174 基因组的 DNA 转录——我们的工作目前包括设计一种具有高效性的立足点开关。我们已经成功生产出脂质体,并正在努力整合检测机制我们在量子计算机上测试该时空密度矩阵对单量子比特系统的预测。使用我们的方法计算的时空纠缠构成了一种新的热化探测,可以为选择一种有效的张量网络假设来研究量子多体系统的时间演化。使用合成细胞建立病毒宿主相互作用的最小模型 Layla Adeli 导师:Richard Murray 和 Zach Martinez 利用最小模型研究合成细胞病毒感染的潜力使合成细胞成为研究尚未得到充分研究的病原体的首选。为了设计 PhiX174 噬菌体的合成宿主,我们尝试将 PhiX174 识别的脂多糖 (LPS) 整合到脂质体膜中,以潜在地封装无细胞的转录、翻译和复制系统 (PURE Rep)。此外,当脂质体中的 PhiX174 基因触发时,设计为发出荧光的立足点开关可以检测 PhiX174 基因组的 DNA 转录——我们的工作目前包括设计一种具有高效性的立足点开关。我们已经成功生产出脂质体,并正在努力整合检测机制