摘要 - 描述了一种利用脉冲信号校准高带宽示波器的系统。快速脉冲示波器校准系统 (FPOCS) 用于确定带宽为 -20 GHz 的数字示波器的阶跃响应参数。该系统可提供测量可追溯性,以符合美国国家标准与技术研究所 (NIS) 维护的标准。它由快速电阶跃发生器硬件、个人计算机 (E) 和计算机以及参考波形 Le、包含阶跃发生器输出信号估计值的数据文件组成。参考波形由 NIST 对阶跃发生器输出信号 (校准阶跃信号) 的先前测量产生。使用 FPOCS 时,校准阶跃信号应用于设备 u n h te4,即示波器采样通道。测量的阶跃波形经过时基误差校正,然后反射系数从 I% 解卷积而来,结果为脉冲、阶跃和频率响应 edhata,以及它们的相关参数(例如过渡持续时间、过渡幅度、-3 dB 带宽)和不确定性。描述了系统及其组件,并给出了初步测试结果
在微结构射频阱阵列中移动捕获离子量子比特为实现可扩展量子处理节点提供了一条途径。建立这样的节点,提供足够的功能来代表新兴量子技术(例如量子计算机或量子中继器)的构建块,仍然是一项艰巨的技术挑战。在这篇评论中,作者对这种架构进行了全面介绍,包括相关组件、它们的特性及其对整个系统性能的影响。作者提出了一种基于均匀线性分段多层阱的硬件架构,由定制的快速多通道任意波形发生器控制。后者允许以足够的速度和质量进行一组不同的离子穿梭操作。作者描述了微结构离子阱、波形发生器和附加电路的相关参数和性能规格,以及用于验证系统性能的合适测量方案。此外,还详细描述并表征了动态量子比特寄存器重新配置的一组不同的基本穿梭操作。
结果分别分别为37例和71例患者,分别为低和高的KI-67表达。ct 40 KeV-VP,CT 70 KeV-VP,CT 100 KEV-VP和Z EFF相关参数明显更高,但是与具有高KI-67表达式状态的基团表达状态较低的组中,与IC相关的参数较低,而其他分析的参数则没有显示两组之间的统计差异。Spearman的相关性分析表明,CT 40 KEV-VP,CT 70 KEV-VP,CT 100 KEV-VP,Z EFF,Z EFF和N Z EFF与KI-67状态呈负相关,而IC和NIC与KI-67状态呈正相关。ROC分析表明,光谱参数的多变量模型在识别KI-67状态[曲线下的面积(AUC)= 0.967;灵敏度为95.77%;特异性91.89%)]。然而,单变量模型的区分功能是中等的(AUC值0.630-0.835)。此外,NZ Eff
结果:302 例患者中,93 例(30.79%)接种了灭活 COVID-19 疫苗。在 209 例未接种疫苗的患者中,犹豫不决的最常见原因是担心副作用(136 例,65.07%)。接种疫苗的患者患病时间更长(p = 0.08),生物制剂使用率更低(p < 0.001);93 例接种疫苗的患者中有 16 例(17.20%)出现副作用,且大多为轻度;8 例(8.60%)在接种疫苗后 12-128 天内出现疾病发作或新发疾病,2 例(2.15%)出现严重不良反应(视力缺陷和脑梗塞)。17 例患者的免疫相关参数表明接种疫苗后 IgA 和 IgM 水平下降(p < 0.05)。 93 名接种疫苗的患者中有 18 名(19.35%)在接种疫苗后被确诊。这些患者在疾病发作时 CD19 + B 细胞的百分比明显高于同时确诊的未接种疫苗的患者(p < 0.05)。
随着集成光子系统的规模和复杂性的增长,光子设计自动化(PDA)工具和过程设计套件(PDK)对布局和仿真变得越来越重要。但是,固定的PDK通常无法满足自定义的不断增长的需求,迫使设计师使用FDTD,EME和BPM模拟来花费大量时间来进行几何学优化。为了应对这一挑战,我们提出了基于光学波导的单一演变以及来自固有波导的汉密尔顿人的紧凑模型,提出了一个数据驱动的本本元传播方法(DEPM)。相关参数是通过复杂的耦合模式理论提取的。一旦构造,紧凑型模型就可以在模型的有效范围内实现毫秒尺度的模拟,以与3D-FDTD达到准确性。此外,该方法可以迅速评估制造对设备和系统性能的影响,包括随机相误差和对极化敏感的组件。数据驱动的EPM因此为未来的光子设计自动化提供了有效和功能的溶液,并有望在集成光子技术方面进一步进步。
I.1 简介 本手册适用于 DS 2000“运动解决方案”驱动器,其软件版本为 3.20X。0 至 3 版本的手册适用于 DS2000 驱动器和 2.00X 以下的软件版本。4 至 5 版本的手册适用于 DS2000“运动解决方案”驱动器,其软件版本为 3.00X 和 3.10X。DS2000 软件版本 3.200 的新特性和新增功能: • I2T IGBT 保护。此功能可保护 IGBT 模块,避免因过大的相电流流动(特别是在低频或锁定转子时)而过热。当保护激活时,可以禁用驱动器或限制电流流动。此功能可通过菜单激活或停用。激活此保护后,陷波滤波器将自动停用。I2T IGBT 保护和陷波滤波器不能同时使用。• 防自由旋转 (AFW)。此功能允许在断电、电机过热和驱动器过热的情况下紧急停止电机。电机将以菜单中最终设置的减速度值制动。此功能可通过菜单激活或停用。• 再生电阻保护。一些客户应用显示再生电阻的持续使用频率过高,有时会导致其损坏甚至断裂。为了避免此问题,在新的 DS2000 固件版本 3.200 中开发了一个新功能:该算法可估计电阻器温度的增长,并根据制造商数据(标称功率、最大功率和峰值功率时间)防止其过热。• FAS G 去磁通。此修改通过引入去磁通组件(正弦电流相移)来提高高速电机性能,该组件从速度值开始,最大角度值可在菜单中设置。可以使用相关参数从菜单中激活或停用此功能。• 模拟参考上的死区。可以引入模拟参考上的死区(以零交叉为中心,两个方向对称),幅度可通过菜单选择。它消除了可能导致电机轴漂移旋转缓慢的偏移。可以使用相关参数从菜单中激活或停用此功能。• PTC/NTC 选择。可以使用菜单选择 PTC/NTC 电机热传感器。• 自动电流偏移补偿。当驱动器被禁用时,此功能会自动激活,并重复计算,直到驱动器关闭。当驱动器启用时,最后计算的偏移值将被记忆并用于电流环路。当驱动器再次被禁用时,此功能将激活并补偿可能的热漂移。
I.1 简介 本手册适用于 DS 2000“运动解决方案”驱动器,其软件版本为 3.20X。0 至 3 版本的手册适用于 DS2000 驱动器和 2.00X 以下的软件版本。4 至 5 版本的手册适用于 DS2000“运动解决方案”驱动器,其软件版本为 3.00X 和 3.10X。DS2000 软件版本 3.200 的新特性和新增功能: • I2T IGBT 保护。此功能可保护 IGBT 模块,避免因过大的相电流流动(特别是在低频或锁定转子时)而过热。当保护激活时,可以禁用驱动器或限制电流流动。此功能可通过菜单激活或停用。激活此保护后,陷波滤波器将自动停用。I2T IGBT 保护和陷波滤波器不能同时使用。• 防自由旋转 (AFW)。此功能允许在断电、电机过热和驱动器过热的情况下紧急停止电机。电机将以菜单中最终设置的减速度值制动。此功能可通过菜单激活或停用。• 再生电阻保护。一些客户应用显示再生电阻的持续使用频率过高,有时会导致其损坏甚至断裂。为了避免此问题,在新的 DS2000 固件版本 3.200 中开发了一个新功能:该算法可估计电阻器温度的增长,并根据制造商数据(标称功率、最大功率和峰值功率时间)防止其过热。• FAS G 去磁通。此修改通过引入去磁通组件(正弦电流相移)来提高高速电机性能,该组件从速度值开始,最大角度值可在菜单中设置。可以使用相关参数从菜单中激活或停用此功能。• 模拟参考上的死区。可以引入模拟参考上的死区(以零交叉为中心,两个方向对称),幅度可通过菜单选择。它消除了可能导致电机轴漂移旋转缓慢的偏移。可以使用相关参数从菜单中激活或停用此功能。• PTC/NTC 选择。可以使用菜单选择 PTC/NTC 电机热传感器。• 自动电流偏移补偿。当驱动器被禁用时,此功能会自动激活,并重复计算,直到驱动器关闭。当驱动器启用时,最后计算的偏移值将被记忆并用于电流环路。当驱动器再次被禁用时,此功能将激活并补偿可能的热漂移。
摘要。在现代动态不断发展的社会中,越来越多的人患有慢性和严重疾病,医生和患者需要特殊和复杂的医疗和健康支持。因此,著名的健康利益相关者已经认识到发展此类服务以简化患者生活的重要性。此类支持需要收集:大量患者的复杂数据(临床、环境、营养、日常活动……)、来自智能可穿戴设备的各种数据、来自配备传感器的服装的数据等。必须正确汇总、处理、分析整体患者数据并呈现给医生/护理人员,以推荐适当的治疗和行动,以改善患者的健康相关参数和总体健康状况。先进的人工智能技术提供了分析此类大数据、使用它们并获得新知识以支持(个性化)医疗决策的机会。基于高级机器/深度学习、联邦学习、迁移学习、可解释人工智能等新方法为未来更高质量地使用健康和医疗数据开辟了新道路。在本文中,我们将介绍一系列人工智能方法在(个性化)医疗决策中的应用领域的一些关键方面和典型示例。
使用机器学习,深度学习和简化的多种疾病预测是一个综合项目,旨在预测包括糖尿病,心脏病,肾脏疾病,帕金森氏病和乳腺癌在内的各种疾病。该项目利用机器学习算法,例如带有Keras的Tensorflow,支持向量机(SVM)和逻辑回归。模型是使用简易云和简化库来部署的,为疾病预测提供了用户友好的界面。应用界面包括五种疾病选择:心脏病,肾脏疾病,糖尿病,帕金森氏病和乳腺癌。选择特定疾病后,提示用户输入预测模型所需的相关参数。输入参数后,该应用会立即产生疾病预测结果,表明该人是否受疾病影响。该项目解决了使用机器学习技术准确疾病预测的需求,从而可以尽早检测和干预。简化云和简化库提供的用户友好界面增强了可访问性和可用性,使个人可以轻松评估其各种疾病的风险。不同模型获得的高精度证明了使用的机器学习算法在疾病预测中的有效性。
摘要:ICAO 附件 16 规定用于认证亚音速运输飞机的声学性能。每架飞机都根据在进场和离场沿线特定认证位置测量到的 EPNL 水平进行分类。通过模拟此认证过程,可以确定所有相关参数并评估有希望降低噪音认证水平的措施,以符合基本 ICAO 规定,即飞机的允许运行条件。此外,模拟是评估新技术和不存在的飞行器概念的唯一方法,这也是本文所述研究活动的主要动机。因此,ICAO 附件 16 规定被整合到 DLR 现有的噪音模拟框架中,并在概念设计阶段实现新型飞机概念的虚拟噪音认证。预测的认证水平可以直接选择为设计目标,以便为新飞机设计实现有利的 ICAO 噪音类别,即同时考虑设计和由此产生的飞行性能。可以对所考虑的每种概念飞机设计的操作限制和允许的飞行程序进行详细评估和识别。可以对影响预测噪声认证水平的相关输入参数进行敏感性研究。具有主导作用的特定噪声源